WSPLIT – Photoinduced Water Splitting Dynamics by Organic Chromophores

AAPG 2017 CES 05 (ANR-17-CE05-0005-01)

01/10/2017 – 31/02/2022

Final report

Read WSPLIT final report (pdf).

Project descriptions and goals

WSPLIT is an ANR funded project for investigating a new sequence of reactions for the water-splitting process

2H_2O + h\nu → 2H_2 + O_2.

These new sequence reactions are the water-split reaction:

A(H_2O)_n + h\nu \rightarrow AH^\bullet(H_2O)_{n-1} + OH^\bullet

and the radical split reaction:

AH^\bullet(H_2O)_{n-1} + h\nu \rightarrow A(H_2O)_{n-1} + H^\bullet.

where A is an organic chromophore.

Based on these two reactions for radical formation, we have proposed the WSPLIT fuel cell, which should be more efficient than conventional fuel cells by reducing ion transport.

However, before building a WSPLIT fuel cell, we need:

  • To develop and use advanced experimental and computational methods to characterize the radical dynamics in microsolvated organic chromophores.
  • To use this basic knowledge to search for ways to reduce the recombination rate in these photoreactions.
  • To test the efficiency of this class of radical reactions when photoinduced by different organic chromophores.

WSPLIT consortium

Principal investigators

  • Mario BARBATTI (PI). ICR, Marseille. Responsible for theoretical simulations and methods.
  •  Christophe JOUVET (Co-PI). PIIM, Marseille. Responsible for experimental photochemistry.
  • Gilles GREGOIRE (Co-PI). ISMO, Orsay. Responsible forE experimental time-resolved studies.

New collaborations arising in the frame of WSPLIT

  • Jennifer NOBLE, CNRS at PIIM (Marseille) since 2018
  • French-Thai bilateral collaboration: PHC SIAM 2019-2020 (WSOC)
    Burapat INCEESUNGVORN, Chiang Mai University
    Nawee KUNGWAN, Chiang Mai University

WSPLIT results and publications

The WSPLIT results have been published in several papers.

Testing watersplitting in clusters

  • Huang, X.; Aranguren, J.-P.; Ehrmaier, J.; Noble, J. A.; Xie, W.; Sobolewski, A. L.; Dedonder-Lardeux, C.; Jouvet, C.; Domcke, W. Photoinduced water oxidation in pyrimidine–water clusters: a combined experimental and theoretical study. Phys. Chem. Chem. Phys. 2020, 22, 12502-12514. 10.1039/D0CP01562H

Understanding competing nonradiative processes

  • Lischka, H.; Barbatti, M.; Siddique, F.; Das, A.; Aquino, A. J. A. The effect of hydrogen bonding on the nonadiabatic dynamics of a thymine-water cluster. Chem. Phys. 2018, 515, 472-479. 10.1016/j.chemphys.2018.07.050
  • Mohamadzade, A.; Bai, S.; Barbatti, M.; Ullrich, S. Intersystem crossing dynamics in singly substituted thiouracil studied by time-resolved photoelectron spectroscopy: Micro-environmental effects due to sulfur position. Chem. Phys. 2018, 515, 572-579. 10.1016/j.chemphys.2018.08.011
  • Noble, J. A.; Aranguren-Abate, J. P.; Dedonder, C.; Jouvet, C.; Pino, G. A. Photodetachment of deprotonated aromatic amino acids: stability of the dehydrogenated radical depends on the deprotonation site. Phys. Chem. Chem. Phys. 2019, 21, 23346-23354. 10.1039/C9CP04302K
  • Noble, J. A.; Marceca, E.; Dedonder, C.; Jouvet, C. Influence of the N atom and its position on electron photodetachment of deprotonated indole and azaindole. Phys. Chem. Chem. Phys. 2020, 22, 27290-27299. 10.1039/D0CP03609A
  • Noble, J. A.; Marceca, E.; Dedonder, C.; Phasayavan, W.; Féraud, G.; Inceesungvorn, B.; Jouvet, C. Influence of the N atom position on the excited state photodynamics of protonated azaindole. Phys. Chem. Chem. Phys. 2020, 22, 27280-27289.. 10.1039/D0CP03608K
  • Siddique, F.; Barbatti, M.; Cui, Z.-H.; Lischka, H.; Aquino, A. J. A. Nonadiabatic Dynamics of Charge-Transfer States Using the Anthracene-Tetracyanoethylene Complex as Prototype. J. Phys. Chem. A 2020, 124, 3347–3357. 10.1021/acs.jpca.0c01900
  • Mansour, R.; Mukherjee, S.; Pinheiro Jr, M.; Noble, J. A.; Jouvet, C.; Barbatti, M. Pre-Dewar structure modulates protonated azaindole photodynamics. Phys. Chem. Chem. Phys. 2022, accepted. 10.1039/D2CP01056A

Theoretical methods developments

  • Kossoski, F.; Barbatti, M. Nuclear Ensemble Approach with Importance Sampling. J. Chem. Theory Comput. 2018, 14, 3173-3183. 10.1021/acs.jctc.8b00059
  • Dral, P. O.; Barbatti, M.; Thiel, W. Nonadiabatic Excited-State Dynamics with Machine Learning. J. Phys. Chem. Lett. 2018, 9, 5660-5663. 10.1021/acs.jpclett.8b02469
  • Polyak, I.; Hutton, L.; Crespo-Otero, R.; Barbatti, M.; Knowles, P. J. Ultrafast Photoinduced Dynamics of 1,3-Cyclohexadiene Using XMS-CASPT2 Surface Hopping. J. Chem. Theory Comput. 2019, 15, 3929-3940. 10.1021/acs.jctc.9b00396
  • Kossoski, F.; Varella, M. T. d. N.; Barbatti, M. On-the-fly dynamics simulations of transient anions. J. Chem. Phys. 2019, 151, 224104. 10.1063/1.5130547
  • Kossoski, F.; Barbatti, M. Nonadiabatic dynamics in multidimensional complex potential energy surfaces. Chem. Sci. 2020, 11, 9827-9835. 10.1039/d0sc04197a

Reviews

  • Crespo-Otero, R.; Barbatti, M. Recent Advances and Perspectives on Nonadiabatic Mixed Quantum-Classical Dynamics. Chem. Rev. 2018, 118, 7026-7068. 10.1021/acs.chemrev.7b00577
  • Soorkia, S.; Jouvet, C.; Grégoire, G. UV Photoinduced Dynamics of Conformer-Resolved Aromatic Peptides. Chem. Rev. 2020, 120, 3296-3327. 10.1021/acs.chemrev.9b00316

Software