Excited-state proton transfer

Dynamics simulations of proton transfer

Many molecules undergo excited-state intramolecular proton transfer (ESIPT) as a result of an electronic excitation. This is the case, for instance, of 10-hydroxybenzo[h]quinoline (HBQ) (Ref), 2-(2′-hydroxyphenyl)benzothiazole (HBT) (Ref), and [2,2 ‘-Bipyridyl]-3,3 ‘-diol (BP(OH)2) (Ref).

In these three cases the ESIPT dynamics is ultrafast and takes place in less than 100 fs.

Time for proton transfer in HBQ, HBT and BP(OH)2 according to the simulations.

We have performed excited-state dynamics simulations for the investigation of ESIPT processes. These simulations, carried out at TDDFT and CC2 levels, have helped to understand the structural deformations that trigger the proton transfer (Ref, see movie below).

Specifically in the case of HBT in gas phase, the dynamics simulations also predicted the occurrence of cis-trans isomerization after the ESIPT (see movie below), followed by internal conversion. This prediction has been confirmed by experiments also reported in Ref.

Dynamics simulations together with the experimental results from E. Riedle in the LMU (Munich), have allowed us to achieve a very complete view of the proton transfer cycle, including the regeneration of the initial molecule.

In the case of BP(OH)2 double proton transfer may occur. There is an ongoing discussion in the literature about whether the two transfers are simultaneous or sequential. The simulations clearly show that what has been experimentally determined as concerted transfer is in fact a combination of two sequential proton transfers separated by a small delay below the present experimental resolutions (Ref).

Proton transfer within solvents

In collaboration with Nawee Kungwan, from Chiang Mai University, we have also been investigating excited state proton transfer within solvation.

These investigations are done using excited-state dynamics. In Ref, for instance, we run dynamics for 7-azaindole microsolvated with water at ADC(2) level.

7-Azaindole (7AI) in a cluster with water (Ref).

We found out that the proton transfer happens mostly through the two nearest water molecules (it is in fact a double proton transfer). The remaining molecules in the second solvation shell do not take part directly. They have however an indirect effect of stabilizing the hydrogen bonds and reduce the proton-transfer energy barriers.

We have also investigated 1H-pyrrolo[3,2-h]quinoline in water and methanol (Ref) and 7-azaindolein water–methanol and methanol (Ref).

 


Creative Commons Licence
Light and Molecules by Mario Barbatti is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

The views or opinions expressed in this website are solely those of the author. They do not necessarily represent those of the institutions to which the author is or was affiliated.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s