Mario Barbatti

Aix Marseille University, CNRS, ICR Institut Universitaire de France www.barbatti.org

Nonadiabatic Molecular Dynamics: Concepts, Methods, and Emerging Tools

III- Case study: Non-Kasha fluorescence of pyrene

Case study: Non-Kasha fluorescence of pyrene

Nonadiabatic dynamics

Photoabsorption

Kasha rule

LIGHT AND MOLECULES

Fluorescence

Non-Kasha fluorescence

Baba et al. J Chem Phys **1971,** 55, 2433

Baba et al. J Chem Phys **1971,** 55, 2433

Baba et al. J Chem Phys **1971,** 55, 2433

Baba et al. J Chem Phys **1971,** 55, 2433

Non-Kasha fluorescence of pyrene emerges from a dynamic equilibrium between excited states

Cite as: J. Chem. Phys. 157, 154305 (2022); doi: 10.1063/5.0113908 Submitted: 25 July 2022 • Accepted: 15 September 2022 • Published Online: 19 October 2022	View Online	Export Citation	CrossMark
Gabriel Braun, ¹ 🕩 Itamar Borges, Jr., ^{1,a)} 🕩 Adélia J. A. Aquino, ² 🕩 Hans Lischka, ^{3,a)} 🕩 Silmar A. do Monte, ⁵ 🕩 Elizete Ventura, ^{5,a)} 🕩 Saikat Mukherjee, ⁶ 🕩 and Mario Barbat	Felix Pla ti ^{6,7,a)} 🝺	sser, ⁴ 🝺	

Braun et al. J Chem Phys **2022**, 157, 154305

Dynamics from two excitation windows

Braun et al. J Chem Phys **2022**, 157, 154305

Simulating non-Kasha fluorescence

$$\Gamma_{TOT}(E) = \sum_{J} \Gamma_{J \to 0}(E) \rho_{1J}$$

LIGHT AND

LES

$$\sum_{J}()$$
 Sum over electronic states J

 $\Gamma_{J\to 0}(E)$ Differential emission rate from S_J to S_0

 ρ_{1J} Distribution of excited-state population J
(relative to S₁)

$$\Gamma_{TOT}(E) = \sum_{J} \Gamma_{J \to 0}(E) \rho_{1J}$$

$$\Gamma_{J\to 0}\left(E\right) = \frac{2\alpha^{3}}{N_{p}^{(J)}} \sum_{l}^{N_{p}^{(J)}} \Delta E_{0J}^{2}\left(\mathbf{R}_{l}^{(J)}\right) f_{0J}\left(\mathbf{R}_{l}^{(J)}\right) \times \left[1 - H\left(E - \varepsilon_{a}\right)\right] \times G\left(E - \Delta E_{0J}\left(\mathbf{R}_{l}^{(J)}\right), \delta_{J}\right)$$

$$\Gamma_{TOT}(E) = \sum_{J} \Gamma_{J \to 0}(E) \rho_{1J}$$

 $p_{1J} = \frac{N_p^{(J)}}{N_T}$ Number of points in state J during dynamics

Building the ensemble

Pyrene fluorescence: 100 ns - Dynamics is unaffordable

Ergodic protocol:

- Simulate many short surface hopping trajectories
- Discard initial relaxation
- Build the ensemble with the relaxed part of all trajectories
- Suppose this total cumulative time is representative of phase space occupation

Braun et al. J Chem Phys **2022**, 157, 154305

Then, ADC(2) surface hopping...

A parenthesis: Velocity rescaling in surface hopping

LIGHT AND

Increase the velocity to conserve total energy

After hopping from L to J, velocity is rescaled as

$$\mathbf{v}_{\alpha}^{(J)} = \mathbf{v}_{\alpha}^{(L)} + \gamma_{LJ} \, \frac{\mathbf{u}_{\alpha}}{M_{\alpha}}$$

Rescaling is only possible if the kinetic energy removed from the molecule satisfies

$$\left|\Delta K_{LJ}\right| \leq \frac{1}{2\sum_{\alpha} \frac{u_{\alpha}^{2}}{M_{\alpha}}} \left(\sum_{\alpha} \mathbf{v}_{\alpha}^{(L)} \cdot \mathbf{u}_{\alpha}\right)^{2}$$

Kinetic energy reservoir

Kinetic energy

LIGHT AND MOLEC

Rescaling in the NAC direction ($\mathbf{u} = \mathbf{h}_{LJ}$)

$$\left|\Delta K_{LJ}\right| \leq \frac{1}{2\sum_{\alpha} \frac{\left(h_{LJ,\alpha}\right)^2}{M_{\alpha}}} \left(\sum_{\alpha} \mathbf{v}_{\alpha}^{(L)} \cdot \mathbf{h}_{LJ,\alpha}\right)^2$$

Rescaling in the momentum direction ($\mathbf{u} = \mathbf{p}_{l}$) $\left|\Delta K_{LJ}\right| \leq \frac{1}{2\sum_{\alpha} \frac{p_{L,\alpha}^2}{M_{\alpha}}} \left(\sum_{\alpha} \mathbf{v}_{\alpha}^{(L)} \cdot \mathbf{p}_{L,\alpha}\right)^2 = K_L$

Kinetic reservoir

Rescaling in the momentum direction, with a **reduced kinetic reservoir**

 $\left|\Delta K_{LJ}\right| \leq \frac{K_L}{N}$

Kinetic energy

Braun et al. J Chem Phys 2022, 157, 154305

Velocity rescaling!

Time (fs)

Velocity rescaling!

Quick guide to velocity rescaling:

- If possible, rescale along the NAC vector direction
- If NAC vectors are unavailable, adjust in the gradient difference direction
- If gradient differences are unavailable, use a reduced kinetic reservoir

Toldo *et al. JCTC* **2024**, 20, 614

End of parenthesis

	Cumulative time
High-energy band	21 ps
Low-energy band	23 ps

Braun et al. J Chem Phys **2022**, 157, 154305

Braun et al. J Chem Phys **2022**, 157, 154305

We employed nuclear ensembles and surface hopping to characterize the non-Kasha fluorescence of pyrene.

And we can do much more...

Surface hopping algorithmic flexibility

Toldo *et al., PCCP* **2023,** *2*5, 8293

Newton-X offers a complete software platform for surface hopping dynamics, from spectrum simulations to advanced data analysis.

Barbatti et al. JCTC 2022, 18, 6851

To know more:

Pyrene fluorescence:

• Braun et al. J Chem Phys **2022**, 157, 154305

Kinetic energy rescaling:

• Toldo *et al. JCTC* **2024**, *20*, 614

Surface hopping flexibility:

• Toldo et al., PCCP **2023,** 25, 8293

