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The quantum state
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Quantum state in the Hilbert space

The number of dimensions 
is the number of possible 
outputs.
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Kets can be 
represented as 
column vectors



Operators in the Hilbert space

An operator acts on the 
vector creating a new 
vector in ℋ
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Operators can 
be represented 
as matrices



Inner product in the vector space
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The inner product of two 
vectors

encodes their overlap
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Bras can be 
represented as 
complex-conjugate 
row vectors



Any observable is represented 
as a self-adjoint operator Ô in ℋ 
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The expected value of Ô when 
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Qubit in the Hilbert space

The number of dimensions 
is two.
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Observables
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Superposition
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Any unit vector in ℋ is a 
possible state
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Density operator
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Unsure which state we have…

The density operator will also 
be central for description of 
open quantum systems.



Commutation



Commutation relations
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Commuting operators share the same 
eigenvectors.
 
The system can have well-defined values 
for the observables R and S 
simultaneously.
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Commutation relations

Non-commuting operators do not share 
eigenvectors.
 
The system cannot have well-defined 
values for the observables R and S 
simultaneously.

|S2⟩

|S1⟩

Non-commutation leads to the 
Heisenberg uncertainty principle. 
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Deterministic evolution 
of the quantum state



Schrödinger evolution
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Schrödinger Equation

In the non-relativistic limit, they imply:
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1) Time evolution is unitary (conserves 
total probability) and reversible:

ˆ
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2) The Hamiltonian is the generator of 
time translation:

We assume that: 
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Von Neumann evolution
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Von Neumann Equation



Stochastic evolution of 
the quantum state
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Quantum state measurement
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A quantum state may follow two types of time evolution:

1. On itself, it evolves with the Schrödinger equation 
(unitary and deterministic)

2. During a measurement, it evolves with the Born rule 
(non-unitary and stochastic)

Gleason's theorem shows that the Born rule 
can be derived from the usual mathematical 
representation of the quantum state.



Generalization 1:
Multidimensional systems

& position basis



How many outputs?

0 5 m

6 outputs ∞ outputs
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countable outputs



( ) =  x x dx

0 5 m
uncountable ∞ outputs
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countable outputs



( ) =  x x dxState vector

Wave function Base vector
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Position-basis Schrödinger equation

Time evolution in the position basis



Generalization 2:
Composite systems



2 outputs

1 Qubit

4 outputs

2 Qubits
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 : ,B H T

In quantum chemistry, we 
compose spin |𝑠⟩ and 
position |𝒓⟩ spaces to 
describe electron’s spin 
orbitals 𝜒 = |𝑠, 𝒓⟩.
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Entanglement
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Permutation symmetry
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Indistinguishable particles A and B

Fermion’s antisymmetry leads to the 
Pauli exclusion principle.

Fermions

1 2 = − 

Bosons

1 2 = 



Info from a subsystem

AB Density of a composite system AB

 Tr  = = A B AB i AB i

i

B B Reduced density of A

A contains, exhaustively and correctly, all 
information (i.e., all measurement statistics) 
that the observer of system A can extract.
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Lindblad evolution
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Lindblad Equation

The Lindblad equation conserves the 
total probability and always yields 
positive probabilities.



Quantization
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Replace it in the position-basis Schrödinger equation
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Separate the variables:
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We can separate r and t in the wave function:
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|  (t) |2 = 1: This phase factor does 
        not impact probabilities 



The second equation

is the Time-Independent Schrödinger equation 
(on the position basis)
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Energy
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Excited states
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The Born-Oppenheimer 
approximation



“The Born-Oppenheimer idea is one of those wonderful 
approximations that even in failure forms the basis for discussion and 
systematic corrections. 

“Without the Born-Oppenheimer approximation as a foundation, there 
would be no molecular structure, solid-state crystal structure, 
molecular vibrations, phonons, electronic band structure, and so on. 

“Why? Because it is the Born-Oppenheimer approximation that allows 
separation of electronic from nuclear motion. Without it, we appear to 
be lost in a soggy many-body ‘pea soup’ or plasma of electrons and 
nuclei, where there is seemingly no structure at all, save the kind of 
structure one finds in a two-component liquid.”

- Eric J Heller, The semiclassical way, 2018
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Electronic 
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Nuclear wave 
function
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Molecular problem
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Adiabatic approximation
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Electronic Schrödinger equation
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BO molecular wave function

Time-independent adiabatic formulation

Check the derivation in the appendix

Potential 
Energy 
Surface
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N points × 3 dimensions
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A note about 
molecular time





( ) ( )( ) ( ) ( )ˆ  + =nucT ER R R R

There’s no time dependency.

A molecule is not rotating or vibrating!
Electrons are not orbiting!

( ) ( )( ) ( ) ( ) ( )ˆ , ; ; + =elecT V Er r R r R R r R

Barbatti, Aeon Magazine 2023, tinyurl.com/emptyatom 

https://tinyurl.com/emptyatom


For a molecule in a well-defined energy state: 

• Momentum = wave function steepness

• Kinetic energy = field stress (how much the wave function differs from the mean)
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• Angular momentum = wave function blobs and nodes  ˆ − i r



Time becomes important again during chemical reactions or field interactions

Crespo-Otero et al. PCCP 2014, 16, 18877



We need dynamics.



To know more:

Quantum mechanics
• Linear algebra: 3Blue1Brown, tinyurl.com/3b1bLA 
• Mathematical concepts of QM: Quantum Sense, tinyurl.com/quantumsense 
• Hilbert space: Abide by Reason, tinyurl.com/hilbertspace  
• Course on QM: ViaScience, tinyurl.com/viasciQM 
• Density operator: Wu; Scholes. J Phys Chem Lett 2024, 15, 4056
• Lindblad evolution: Manzano. AIP Adv 2020, 10, 025106

The BO approximation
• Eric J Heller, The semiclassical way, 2018. Ch 16

About molecular time
• Barbatti, Aeon Magazine 2023, tinyurl.com/emptyatom 
• Minute Physics, tinyurl.com/minutephysatom 

@mbarbatti.bsky.social

https://tinyurl.com/3b1bLA
https://tinyurl.com/quantumsense
https://tinyurl.com/hilbertspace
https://tinyurl.com/viasciQM
https://tinyurl.com/emptyatom
https://tinyurl.com/minutephysatom


Appendix: 
Derivation of the Born-
Oppenheimer Formulation
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Field-free non-relativistic molecular problem
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Solving the electronic part
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Solving the nuclear part
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Working on the left-side term
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Expanding the blue term
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Projecting on n’
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Using orthonormality
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Time-independent Born-Huang formulation
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Adiabatic approximation
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Nuclear Schrödinger equation
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BO molecular wave function

Time-independent BO adiabatic formulation



Appendix: 
General unitary transformations



General unitary evolution
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General unitary evolution
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