L12 - Statistical Mechanics 4

Machine learning

Neural networks

What is a Neural Network?

Adapted from: www.3blue1brown.com/lessons/neural-networks

Plain vanilla (aka "multilayer perceptron")

 0.7 0.0 0.0 $1.0\,0.6\,0.1\,0.$ $1.01.00.2$

UAU

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.5 0.9 0.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.5 0.1 0.0 0.0 0.0 0.0 0.0 1.0 1.0 0.9 0.5 0.5 0.5 0.5 0.7 1.0 1.0 1.0 2.4 0.0 0.1 0.8 0.8 0.8 1.0 1.0 1.0 1.0 0.9 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

28 00000000000000000000000000000 00000000000000000000000000000 00000000000000000000000000000 00000000000000000000000000000 0000000000000000000000000000 00000000000000000000000000 000000000000●●●●●●●000000000 \bigcirc 000000000●●●000●●●00000000 00000●●●●000000000 $\bigcap \bigcap$ $\begin{pmatrix} 1 & 1 \end{pmatrix}$ つ〇〇 つ〇〇(\bigcirc \bigcirc \bigcirc \bigcirc 88801 $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ \bigcirc DOOOOO DOOOOOOO \bigcirc \bigcirc \bigcirc 8000 OC OO●●●○○○○○○○○○○○ DOOOC 00000●●●000000000000 000000000000●●0000000000000 000000000000000●●000000000000 000000000000000●●000000000000 000000000000000●●000000000000 000000000000000●●0000000000000 000000000000000●●000000000000 0000000000000000●●000000000000 0000000000000000000000000000

$28 \times 28 = 784$

COOOOOOO F F \blacktriangleright \blacktriangleright

784

COOOOO ... F \mathcal{F} $\bigodot \limits_{0}^{0} \bigodot \limits_{0}^{1} \bigodot \limits_{0}^{1} \ \ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$ OOOOOO \blacktriangleright \Box

784

$\sigma(w_1a_1+w_2a_2+w_3a_3+\cdots+w_na_n-10)$ "bias"

Only activate meaningfully when weighted sum >10

 $784 \times 16 + 16 \times 16 + 16 \times 10$ weights

> $16 + 16 + 10$ biases

13,002

784

Subscript corresponds to a neuron in the layer

$$
\text{Sigmoid} \tag{1}
$$
\n
$$
= \sigma \left(w_{0,0} \ a_0^{(0)} + w_{0,1} \ a_1^{(0)} + \dots + w_{0,n} \ a_n^{(0)} + b_0 \right)
$$
\n
$$
\text{Bias} \tag{2}
$$

$$
\begin{array}{|l|l|}\n \hline\nw_{0,0} & w_{0,1} & \dots & w_{0,n} \\
\hline\nw_{1,0} & w_{1,1} & \dots & w_{1,n} & a_0^{(0)} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
w_{k,0} & w_{k,1} & \dots & w_{k,n} & a_n^{(0)}\n\end{array}
$$

$$
\text{Sigmoid}\n\begin{array}{l}\n\mathbf{u} \\
\mathbf{v} \\
\
$$

$$
w_{0,0} \quad w_{0,1} \quad \ldots \quad w_{0,n} \quad a_0^{(0)}
$$
\n
$$
w_{1,0} \quad w_{1,1} \quad \ldots \quad w_{1,n} \quad a_1^{(0)}
$$
\n
$$
\vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots
$$
\n
$$
w_{k,0} \quad w_{k,1} \quad \ldots \quad w_{k,n} \quad a_n^{(0)}
$$

$$
\text{Sigmoid}\n\begin{array}{l}\n\mathbf{u}_{0,0} & a_{0}^{(0)} + w_{0,1} \, a_{1}^{(0)} + \dots + w_{0,n} \, a_{n}^{(0)} + b_{0} \\
\mathbf{v}_{0,0} & \mathbf{v}_{0,1} \, a_{1}^{(0)} + \dots + w_{0,n} \, a_{n}^{(0)} + b_{0} \\
\mathbf{v}_{0,0} & \mathbf{v}_{0,1} \, a_{0}^{(0)} + \dots + w_{0,n} \, a_{n}^{(0)} + b_{0} \\
\mathbf{v}_{0,0} & \mathbf{v}_{0,1} \, a_{0}^{(0)} + \dots + w_{0,n} \, a_{n}^{(0)} + b_{0} \\
\mathbf{v}_{0,1} & \mathbf{v}_{0,2} \, a_{0}^{(0)} + \dots + w_{0,n} \, a_{n}^{(0)} + b_{0} \\
\mathbf{v}_{0,1} & \mathbf{v}_{0,2} \, a_{0}^{(0)} + \dots + w_{0,n} \, a_{n}^{(0)} + b_{0} \\
\mathbf{v}_{0,2} & \mathbf{v}_{0,3} \, a_{0}^{(0)} + \dots + w_{0,n} \, a_{n}^{(0)} + b_{0} \\
\mathbf{v}_{0,3} & \mathbf{v}_{0,4} \, a_{0}^{(0)} + \dots + w_{0,n} \, a_{n}^{(0)} + b_{0} \\
\mathbf{v}_{0,3} & \mathbf{v}_{0,4} \, a_{0}^{(0)} + \dots + w_{0,n} \, a_{n}^{(0)} + b_{0} \\
\mathbf{v}_{0,4} & \mathbf{v}_{0,5} \, a_{0}^{(0)} + \dots + w_{0,n} \, a_{n}^{(0)} + b_{0} \\
\mathbf{v}_{0,4} & \mathbf{v}_{0,5} \, a_{0}^{(0)} + \dots + w_{0,n} \, a_{n}^{(0)} + b_{0} \\
\mathbf{v}_{0,5} & \mathbf{v}_{0,6} \, a_{0}^{(0)} + \dots + w_{0,n} \, a_{n}^{(0)} + b_{0} \\
\mathbf{v}_{0,6} & \mathbf{v}_{0,6} \, a_{0}^{(0)} + \dots + w_{0,n}
$$

 $a_0^{(0)}$ $w_{0,0}$ $w_{0,1}$... $w_{0,n}$ b_0 $a_1^{(0)}$ $\dots w_{1,n}$ b_1 $w_{1,0}$ $w_{1,1}$ ╅ \Box \bullet $a_n^{(0)}$ b_n $w_{k,0}$ $w_{k,1}$... $w_{k,n}$

Neural network function

10 outputs

A NN with *L* hidden layers takes an input vector **x** and returns an output vector **y** though the forward equations chain

$$
\mathbf{a}^{(1)} = \sigma \left(\mathbf{w}^{(0)} \mathbf{x} + \mathbf{b}^{(0)} \right)
$$

$$
\mathbf{a}^{(2)} = \sigma \left(\mathbf{w}^{(1)} \mathbf{a}^{(1)} + \mathbf{b}^{(1)} \right)
$$

$$
\vdots
$$

$$
\mathbf{a}^{(L)} = \sigma \left(\mathbf{w}^{(L-1)} \mathbf{a}^{(L-1)} + \mathbf{b}^{(L-1)} \right)
$$

$$
\mathbf{y} = \sigma \left(\mathbf{w}^{(L)} \mathbf{a}^{(L)} + \mathbf{b}^{(L)} \right)
$$

The NN is a function of **x** with a parametric dependence on **w** and **b**

$$
\mathbf{y} = f\left(\mathbf{x}; \mathbf{w}, \mathbf{b}\right)
$$

The cost of learning

Adapted from: www.3blue1brown.com/lessons/gradient-descent

 $(\boxed{\bullet},0)$ $(\boxed{\bullet},6)$ $(\boxed{\bullet},3)$ $(\boxed{\bullet},6)$ $(\boxed{\bullet},7)$ $(\boxed{\bullet},8)$ $(\boxed{\circ},0)$ $(\boxed{\circ},9)$ $($ 5, 5) $($ 4, 4) $($ 3, 3) $($ 4, 6) $($ 5, 5) $($ 8, 8) $($ 9, 9) $($ 5, 5) $(\boxed{4}, 4)$ $(\boxed{4}, 4)$ $(\boxed{7}, 7)$ $(\boxed{2}, 2)$ $(\boxed{\circ}$, 0) $(\boxed{3}, 3)$ $(\boxed{2}, 2)$ $(\boxed{8}, 8)$ $(\boxed{9}, 9)$ $(\boxed{7}, 1)$ $(\boxed{9}, 9)$ $(\boxed{2}, 2)$ $(\boxed{7}, 2)$ $(\boxed{7}, 7)$ $(\boxed{9}, 9)$ $(\boxed{4}, 4)$ $(\boxed{\mathbf{8}}$, 8) $(\boxed{\mathbf{7}}$, 7) $(\boxed{\mathbf{4}}$, 4) $(\boxed{\mathbf{7}})$, 1) $(\boxed{\mathbf{3}}$, 3) $(\boxed{\mathbf{7}})$, 1) $(\boxed{\mathbf{5}})$, 5) $(\boxed{\mathbf{3}})$, 3) $(\boxed{2}, 2)$ $(\boxed{3}, 3)$ $(\boxed{5}, 9)$ $(\boxed{0}, 0)$ $(\boxed{9}, 9)$ $(\boxed{9}, 9)$ $(\boxed{1}, 1)$ $(\boxed{5}, 5)$ $(\boxed{\mathcal{F}}, 8)$ $(\boxed{\mathcal{H}}, 4)$ $(\boxed{\mathcal{I}}, 7)$ $(\boxed{\mathcal{P}}, 7)$ $(\boxed{\mathcal{H}}, 4)$ $(\boxed{\mathcal{H}}, 4)$ $(\boxed{\mathcal{H}}, 4)$ $(\boxed{\mathcal{A}}, 2)$ $(\boxed{\circ},0)(\boxed{\circ},7)(\boxed{\circ},2)(\boxed{\circ},4)(\boxed{\circ},8)(\boxed{\circ},2)(\boxed{\circ},6)(\boxed{\circ},9)$ $(\boxed{1},9)$ $(\boxed{2},2)$ $(\boxed{5},8)$ $(\boxed{7},7)$ $(\boxed{6},6)$ $(\boxed{1},1)$ $(\boxed{1},1)$ $(\boxed{4},2)$ $(2,3)(7,9)(1,1)(6,6)(5,5)(7,1)(1,1)(6,0)$

Test on these

What's the "loss" of this difference?

Utter trash

Loss of

 $(0.43 - 0.00)^{2} +$ $(0.28 - 0.00)^{2} +$ $(0.19 - 0.00)^{2} +$ $(0.88 - 1.00)^2 +$ $(0.72 - 0.00)^2 +$ $(0.01 - 0.00)^{2} +$ $(0.64 - 0.00)^{2} +$ $(0.86 - 0.00)^2 +$ $(0.99 - 0.00)^2 +$ $(0.63 - 0.00)^2$

Cost function

 $(\boxed{5}, 9)(\boxed{0}, 0)(\boxed{2}, 2)(\boxed{6}, 6)$ $(\boxed{\textcircled{\scriptsize{\bullet}}},0)$ $(\boxed{\textcircled{\scriptsize{\bullet}}},4)$ $(\boxed{\textcircled{\scriptsize{\bullet}}},6)$ $(\boxed{\textcircled{\scriptsize{\bullet}}},7)$ $(\boxed{7}, 7)(\boxed{8}, 8)(\boxed{3}, 3)(\boxed{7}, 1)$ 3.37 $(\boxed{1},1)\overline{(\boxed{1}},\overline{1})(\boxed{6},6)\overline{(\boxed{3}},3)$ $(\boxed{1},1)(\boxed{2},1)(\boxed{\odot},0)(\boxed{\mathcal{Y}},4)$

Lots of training data

One number

 $13,002$ weights and biases

For each training data *k*, with true value $\hat{\textbf{y}}_{\scriptscriptstyle{k}}$ get the *loss function* over the output neurons

$$
\mathcal{L}_{k}(\mathbf{w}, \mathbf{b}) = \frac{1}{N_{out}} \sum_{i=1}^{N_{out}} \left(NN\left(x_{k,i}; \mathbf{w}, \mathbf{b}\right) - \hat{y}_{k,i}\right)^{2}
$$

Considering all training data, get the *cost function*

$$
C\big(\mathbf{w},\mathbf{b}\big) = \frac{1}{N_{\text{train}}} \sum_{k=1}^{N_{\text{train}}} \mathcal{L}_k\big(\mathbf{w},\mathbf{b}\big)
$$

The optimized NN is the one with **w** and **b** that minimizes *C*(**w**, **b**)

$$
\min_{\mathbf{w},\mathbf{b}} C(\mathbf{w},\mathbf{b}) \Longrightarrow \nabla_{\mathbf{w},\mathbf{b}} C(\mathbf{w},\mathbf{b}) = 0
$$

How to Train Your Neural Network

Adapted from: www.3blue1brown.com/lessons/gradient-descent

 w_0 should increase somewhat w_1 should increase a little w_2 should decrease a lot

should increase a lot $w_{13,000}$ $w_{13,001}$ should decrease somewhat $w_{13,002}$ should increase a little

The minimization is done with **gradient descent**:

$$
\mathbf{w}_{m+1} = \mathbf{w}_m - \gamma_m \frac{\partial C(\mathbf{w}_m, \mathbf{b}_m)}{\partial \mathbf{w}_m}
$$
 (γ_m -learning rate)

$$
\mathbf{b}_{m+1} = \mathbf{b}_m - \gamma_m \frac{\partial C(\mathbf{w}_m, \mathbf{b}_m)}{\partial \mathbf{b}_m}
$$

Usually, the gradient is computed for a sub-set of **w** and **b** components chosen at random. It is called **stochastic gradient descent**

en.wikipedia.org/wiki/Gradient_descent

Now that we have optimal **w** and **b**, we can use the neural network to identify images that were not in the training set.

This is the basics. But there is so much more...

• **Physics-informed neural networks (PINN)**

Integrates partial differential equations expressing physical laws into the NN cost function youtu.be/G_hIppUWcsc

• **Graph neural networks (GNN)**

NN for processing data that can be represented as vertices connected by edges distill.pub/2021/gnn-intro/

• **Convolutional neural networks (CNN)**

NN with convolutional layers that capture local patterns and global features in the input data tinyurl.com/convnnet

• **Generative adversarial networks (GAN)**

Two NN — a generator and a discriminator — compete to create realistic-looking outputs tinyurl.com/ganetintro

• **Transformer neural networks**

NN architecture for encoding words, word position, and word's contextual relation with others in the sentence (self-attention). <https://youtu.be/zxQyTK8quyY>

Artificial inteligence

Machine learning in practice

Machine learning development network

www.v7labs.com/blog/pytorch-vs-tensorflow

Repository Creation Date

www.v7labs.com/blog/pytorch-vs-tensorflow

import torch import torch.nn as nn

```
class SimpleNeuralNetwork(nn.Module):
   def init (self):
     super(SimpleNeuralNetwork, self). __init__()
     self.layer1 = nn.Linear(784, 16)
     self.layer2 = nn.Linear(16, 16)self.output layer = nn.Linear(16, 10)
```

```
def forward(self, x): 
  x = torch.sigmoid(self.layer1(x))
  x = torch.sigmoid(self.layer2(x))
  x = self.output_layer(x)
   return x
```
Instantiate the model model = SimpleNeuralNetwork()

DEEP LEARNING WITH PYTORCH CODEMY.COM **PYTORCH**

Deep Learning With PyTorch

Codemy.com

19 videos 19,968 views Last updated on Oct 16, 2023

 $\equiv +$ \Rightarrow \bot : χ Shuffle Play all

In this playlist we'll learn A.I. Deep Learning with Pytorch and Python. If you're new to Artificial Intelligence, this is for you!

tinyurl.com/pytorchlearn

ML for Modeling Materials

AI for theoretical chemistry has been used to

- Search the chemical space of compounds
- Perform dimensionality reduction, clustering, and pattern recognition
- Improve or accelerate quantum chemical methods
- Predict properties as a surrogate approach

Search the chemical space of compounds

GNN-based discovery of new materials

Merchant *et al. Nature* **2023**. [10.1038/s41586-023-06735-9](http://www.doi.org/10.1038/s41586-023-06735-9)

GNN-based discovery added 381,000 new stable materials to the database

Merchant *et al. Nature* **2023**. [10.1038/s41586-023-06735-9](http://www.doi.org/10.1038/s41586-023-06735-9)

Perform dimensionality reduction, clustering, and pattern recognition

Hierarchical protocol for the automatic analysis of the ring deformation in surface hopping

Based on

- dimensionality reduction (PCA)
- clustering (DBSCAN + agglomerative clustering)

C10-puckering C= \overline{O} out-of-plane motion $\left[-\right]^a$ Cytosine **Cluster A1B2C1** 56.2% C1-puckering NH₂ out-of-plane motion $\left[-\right]$ ^a **Cluster A1B2C2** 12.1% C1-puckering **Cluster A1B2C3** 6.3% C1-puckering C1-N6 bond stretching **Cluster A1B3** 7.7% C1-puckering C= O out-of-plane motion $[+]^a$

Channel

Cluster A1B1 10.2%

> **Cluster A2** 7.5%

Zhu *et al. PCCP* **2022**, *24*, 24362

NH₂ out-of-plane motion $[+]^a$

C1-puckering

Important motion

Improve or accelerate quantum chemical methods

Density functional from an NN

Input features:

- charge density r,
- norm of charge density
- electron kinetic energy density
- local HF exchange energy densities

"The resulting functional, DM21 (DeepMind 21), correctly describes typical examples of artificial charge delocalization and strong correlation and performs better than traditional functionals on thorough benchmarks for main-group atoms and molecules. DM21 accurately models complex systems such as hydrogen chains, charged DNA base pairs, and diradical transition states."

Kirkpatrick *et al. Science* **2021**, *374*, 1385 Quanta magazine: tinyurl.com/qmdm21

Predict properties as a surrogate approach: ML Potentials

$$
\mathbf{R} \rightarrow \left| \begin{array}{c} \left(T_{elec}(\mathbf{r})+V(\mathbf{r},\mathbf{R})\right)\varphi(\mathbf{r};\mathbf{R})=E(\mathbf{R})\varphi(\mathbf{r};\mathbf{R}) \\ \end{array} \right| \rightarrow E(\mathbf{R})
$$

 \Box

Descriptor

Example: ANI ML Potential

Gao *et al. J Chem Inf Model* **2020**, *60*, 3408

- MD17 Database
- Energy + Force
- $N_{\text{train}} = 1k$; $N_{\text{model}} = 20$; $N_{\text{test}} = 20k$

To know more:

3Blue1Brown Course on NN

• www.3blue1brown.com/topics/neural-networks

Kernel Methods

• Pinheiro Jr; Dral, In *Quantum chemistry in the age of machine learning,* **2023***; pp 205*

ML Potentials

• Pinheiro Jr *et al*. *Chem Sci* **2021**, *12*, 14396

Deep Learning Applied to Computational Mechanics

• Vu-Quoc; Humer. *Comput Model Eng Sci* **2023**, *137*, 1069

Papers available for download at: amubox.univ-amu.fr/s/xXAiMZrDPb9RMRX (Ask me for the password)

Computational modeling of nanosystems

Epiloge

many

Quantum Statistical **Mechanics**

Quantum

Mechanics

Classical Statistical **Mechanics**

Operational skills

Programming

• Data processing

Modeling

Computational Modeling of Nanosystems

Scientific skills

- Quantum chemistry
- Molecular dynamics
- Physical chemistry

• Linear algebra • Statistics

Math skills

-
- Machine learning

Classical **Mechanics**

small large

General relativity Dark matter/energy

Quantum field theory Standard model

few