Questions and Exercises on Quantum Mechanics

Molecular Modeling of Nanosystems - CNE Master

Mario Barbatti

mario.barbatti@univ-amu.fr | www.barbatti.org

1. The output of a quantum chemistry calculation for the excited states of a molecule is the following.

Excited State 44 -> 49 44 -> 53 48 -> 49 48 -> 53	1:	Singlet-A 0.48421 0.16656 0.45653 0.14306	3.9661 eV	312.61 nm	f=0.0008	<s**2>=0.000</s**2>
Excited State 44 -> 49 44 -> 52 45 -> 50 45 -> 51 46 -> 50 47 -> 49 48 -> 49 48 -> 52	5:	Singlet-A -0.13288 0.11442 -0.11475 0.24448 -0.26164 0.50829 0.12104 -0.19407	5.3101 eV	233.49 nm	f=0.0143	<s**2>=0.000</s**2>
Excited State 44 -> 50 45 -> 49 46 -> 49 46 -> 52 47 -> 50 47 -> 51 48 -> 50	6:	Singlet-A 0.13327 0.43711 0.28620 -0.23065 -0.12128 0.25270 -0.24286	5.3517 eV	231.67 nm	f=0.0365	<s**2>=0.000</s**2>

Based on these data, complete the following table.

Excited State	Energy (eV)	Oscillator strength	Main orbital transition
1			
2			
3			

2. The table below summarizes the energies of the ground singlet state (S_0) and the first excited singlet state (S_1) of a molecule for different nuclear conformations $(S_0 \text{ minimum}, S_1 \text{ minimum}, \text{ and } S_0/S_1$ intersection). It also shows the oscillator strength between S_0 and S_1 . Based on these data

- a) Draw an energy diagram indicating the energy levels as a function of the nuclear geometry.
- b) What are the absorption and fluorescence energies?
- c) Explain what may happen to this molecule after it is photoexcited.

Geometry	State Energy (eV)		Oscillator strength	
S₀ minimum	So	0.00	-	
	S1	3.10	0.2	
S1 minimum	So	0.30	-	
	S1	2.50	0.2	
S ₁ /S ₀ intersection	So	2.70	-	
	S1	2.70	-	

3. A molecular system in the *trans* configuration is photoexcited into the second excited singlet state. The schematic potential energy profile for this system connecting the *trans* and *cis* isomers is illustrated below. Based on this figure, describe the possible deactivation pathways of the system until it relaxes back to the ground state.

4. A photoexcited molecular system can get rid of the energy excess from the light absorption via radiative or nonradiative processes.

- a) What is the difference between them?
- b) What are the time scales for each one occurs?
- c) What is a conical intersection, and how does it relate to the relaxation process?

5. In the time-independent Born-Huang approximation, the nuclear wavefunction χ_n of state *n* is given by

$$\left(\hat{T}_{nuc}+E_n-\varepsilon\right)\chi_n+\sum_m\hat{N}_{nm}\chi_m=0$$

where \hat{T}_{nuc} is the nuclear kinetic energy operator, E_n is the electronic potential energy of state n, ε is the molecular energy, \hat{N}_{nm} is the nonadiabatic coupling operator between states n and m, and the summation runs over all states m.

- d) What is the role of \hat{N}_{nm} in this equation?
- e) How can the adiabatic (Born-Oppenheimer) approximation be obtained from this equation?
- f) Write the equation to determine χ_n in the Born-Oppenheimer approximation.
- 6. The Born-Oppenheimer molecular wavefunction is

$$\Psi_{\scriptscriptstyle BO}(\mathbf{r},\mathbf{R}) = \chi(\mathbf{R})\phi(\mathbf{r};\mathbf{R})$$

where **r** represents the electronic coordinates, **R** represents nuclear coordinates, χ is the nuclear wavefunction, and ϕ is the electronic wavefunction.

- a) What is the rationale behind this approximation? Why can the nuclear and electronic parts be written as a product?
- b) What does the semicolon separating \mathbf{r} and \mathbf{R} mean in the electronic wavefunction?
- c) Born and Huang proposed a more general molecular wavefunction guess. Write it.
- d) Why is the Born-Huang wavefunction a better approximation than the Born-Oppenheimer wavefunction?

7. Consider the exact molecular wavefunction $\Psi(\mathbf{r}, \mathbf{R})$ or electronic coordinates \mathbf{r} and nuclear coordinates \mathbf{R} . What is the simplified wavefunction format that Born and Oppenheimer proposed to simplify $\Psi(\mathbf{r}, \mathbf{R})$?

8. Under which condition can a nuclear wavepacket be approximated for an ensemble of independent classical copies of the system, as illustrated in the figure?

9. The figure below shows a nuclear wavepacket simulation for CF_3I reported by Yang et al. [*Science*, **2018**, *361*, 6397]. The pair distance represents the C-I distance.

- a) A time zero, what are the most probable C-I distances?
- b) If we make multiple measurements at 600 fs, which C-I distance should we observe? Which is the most likely?
- c) Based on this figure, how do you interpret the branching happening around 200 fs?

10. What is quantum decoherence? [This video may help: youtu.be/igsuIuI_HAQ]

11. Sometimes, we represent a quantum state by the state vector $|\psi\rangle$ and others by the wavefunction $\psi(x)$. What are the differences and the relations between these two concepts?

12. For a quantum particle with two possible states (*up* and *down*), a possible basis to describe the quantum state is composed of the kets $|up\rangle$ and $|down\rangle$.

- a) What is the dimension of this system's Hilbert space?
- b) If the system contains two of such particles, write a possible basis of kets to describe it. What is the dimension of the Hilbert space?

13. Consider the state
$$|\Phi\rangle = \frac{1}{\sqrt{2}} (|\psi_1\rangle + |\psi_2\rangle)$$

Give the probability of occurrence of output ψ_1 in an experiment, supposing that $|\psi_1\rangle$ and $|\psi_2\rangle$ form an orthonormal basis.