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Abstract. This document is a short guide for the practical work in the 2023 Molecular 

Modeling course. It details the goals and procedures for TP3, TP4, and TP5. 

 

Introduction 

Practical works TP3, TP4, and TP5 aim to help the students develop basic coding skills for 

molecular modeling. This document discusses the theory that will be employed. We will write, 

test, and employ a Python program to run molecular dynamics on a model potential energy 

surface (PES). 

These tasks will be accomplished through three parts:  

• In the first part (TP3), we will implement a code to compute the adiabatic Spin-Boson 

PES discussed in masterclass CM2.  

• In the second part (TP4), we will implement a code to run molecular dynamics based on 

the Velocity Verlet algorithm studied in masterclass CM1. 

• Finally, in the third part (TP5), we will implement the Andersen thermostat introduced in 

masterclass SM1. 

TP3: PES modeling 

The adiabatic Spin-Boson Hamiltonian (SBH),1 is one of the most used models in quantum 

mechanics. It represents a two-state system (like spin 1/2) coupled to an environment of 

harmonic oscillators (the bosons). This model allows the simulation of different phenomena, 

from a photon decay within a cavity to a molecule undergoing decoherence.  

In the SBH model, the potential energy surfaces are given by a set of simple analytical 

functions. Thus, it delivers a simple approximation for the energies, energy gradients, and 

coupling without solving the Schrödinger equation, making it very fast.  

For a two-state system coupled to N harmonic oscillators, the SBH model gives two adiabatic 

potential energy surfaces. The ground-state (i = 1) and excited-state (i = 2) potential energies 

are 
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In these equations, the nuclear coordinates are R = (R1, R2, ..., RN). The specific values of the 

SBH model are determined by several parameters 0, Mi, i, gi, and 0. Their values are 

discussed later. 

The potential energy gradient of the two adiabatic states is 
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Task 1. Create a notebook (Jupyter or Colab) and implement a Python code to compute the 

adiabatic SBH model’s energy and the energy gradient for the lowest state (i = 1) in one 

dimension (N = 1).  

• The code must contain two functions. The first function takes the geometry as input and 

gives the energy as output. The second function takes the geometry as input and outputs 

the energy gradient. 

• The code must be fully documented.  

• The equations that you implemented in the functions must be shown as markdown 

(LaTeX). 

Task 2. Use your code to compute energy and gradients for the parameters given in Table 1.  

• Plot the graph of energy x geometry. 

• Plot the graph of energy gradient x geometry. 

• Play with the parameters. How do the graphs change when you change the parameters? 

What is the effect of each one? 

 

Tip: Work in Hartree atomic units. 

 

Task 3. Determine approximately (R1, R2) for the two minima.  

 

Tip. You can find the approximate minima by plotting E x R in a small region around the 

minima. You can also plot the energy gradient and check the values of R1 that have a gradient 

equal to zero.  

  

Table 1. Parameters for the Spin-Boson model.  

Parameter Value (atomic units) 

0 0.03674933 

0 0.03674933 

M1 1836 

1 0.01136364 

g1 0.22 

  

https://en.wikipedia.org/wiki/Hartree_atomic_units
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TP4: Molecular dynamics (TP4) 

One of the most popular algorithms to integrate Newton’s second law is the Velocity Verlet2 
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When these equations are applied to molecular dynamics,  represents each nuclei of mass M 

at Cartesian position ( ), ,x y z   =R , Cartesian velocity ( ), , ,, ,x y zv v v   =v , and Cartesian 

acceleration ( ), , ,, ,x y za a a   =a . t is the integration step. In Eq. (5), the first term in the 

parenthesis is the potential energy gradient, and F(e) are external forces. The algorithm, 

including a total energy conservation check, is illustrated in Figure 1. 

 

Figure 1. Schematic illustration of the Velocity Verlet algorithm. 

Task 4. Implement a 1D Velocity Verlet algorithm for a single coordinate and without external 

forces. In this case, Eqs (4) and (5) simplify to 
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where x is the position, v is the velocity, a is the acceleration, and M is the mass.   

 

Tip. Make a copy of the Notebook you created in TP3 and work on it. 

  

Tip. Keep working in atomic units. 

 

The total energy at time t is  

 ( ) ( ) ( )T KE t E t E t= +          (8) 

where the kinetic energy is 
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The total energy is conserved if 

 ( ) ( )T TE t E t t − −                    (10) 

where  is a parameter of the dynamics. Use  = 0.004 au. 

 

Tip. Your code will be better if you create separate functions to compute x, v, a, EK, and ET. 

 

Task 5. Run 1-ps (How much is that in atomic units of time?) dynamics on the E1 adiabatic 

PES given by the 1D model of Table 1. Start at a minimum of the left well (you found it in 

Task 3). Use a total energy of approximately 0.1 Hartree. (If the system is at the minimum, the 

total energy equals the kinetic energy. Then, what’s the initial velocity?) Is the total energy 

conserved during your trajectory? If not, your program has either a bug or you used a too-large 

t. (A reasonable value is t = 20 au.) 

 

Tip. To compute the force (the negative of the derivative of the potential energy) and the 

potential energy (needed to check the total energy conservation), use the functions that you 

implemented in TP3. 

  

Task 6. Run the 1D model with different values of total energy, starting with all kinetic energy 

in R2. What minimum energy is needed for the system to jump to the right well?  

 

Tip. You can easily see the jump if you plot R1 as a function of time.  
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TP5: Thermostat  

In the previous TP, you ran microcanonical dynamics (constant energy). Now, let us run 

canonical dynamics (constant temperature). To do so, you should implement the Andersen 

thermostat.3 The algorithm is the following: 

• Define a collision frequency  (suggestion:  = 0.002 au) 

• Integrate dynamics in one step t with Velocity Verlet 

• For each atom, sample a random number r0 

If r0 > t, do not change the velocity 

If r0  t, change the velocity as 
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where rx is another random number and kB is the Boltzmann constant.  

Both r0 and rx are random numbers sampled from a Gaussian distribution of unit variance. 

They are not uniform random numbers! 

Task 7. Implement the Andersen thermostat.  

Task 8. Run dynamics of the 1D Spin Boson model at 300 K on the E1 adiabatic PES given in 

Table 1. Start at the left minimum with zero kinetic energy. How long does the trajectory take 

to reach 300 K? Have you seen jumps to the right well?  

 

Tip. The temperature can be estimated as4 

2 kin

B

E
T

Nk
  

where kinE  is the mean kinetic energy and N is the number of dimensions. Thus, if you 

compute the moving average kinetic energy over the last, say, 200 integration steps, you can 

get T as a function of time. 

  

Task 9. Estimate which temperature corresponds to the minimum total energy to have jumps 

you got in Task 6. (It should be in tens of thousands of Kelvin!) Run dynamics at this 

temperature. Do you see jumps? 
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