
L5 - Classical Mechanics 1
Newton’s Laws



A quick math remainder



Suppose we have a scalar function 
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( ) 2 2 2, ,f x y z x y z= − + +

2 2 2 2 2 2 2 2 2
, ,

x y z
f

x y z x y z x y z

 
 = − − − 

 + + + + + + 

The gradient is



Suppose we have two vectors a and b
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Mechanics of 
a particle
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Consider a single particle with mass m and position r.

The velocity is

d

dt
=

p
F

The motion is determined by Newton’s second law

mp vThe linear momentum is

F is a force acting on the particle.
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The acceleration is defined as:

d
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If the mass is constant, Newton’s second law becomes m=F a
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Newton’s second law

Newton’s second law is valid in an inertial or Galilean system.



Conservation of linear momentum of a particle

0  is a constant 
d

dt
= →

p
p (Newton's first law)

If the total force F is zero, then the linear momentum p is conserved
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The angular momentum about O is

O

 N r F

The torque about O is
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To get the angular equation of motion
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Conservation of angular momentum of a particle

0  is a constant
d

dt
= →

L
L

If the total torque N is zero, then the angular momentum L is conserved
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The work done to move the particle from 1 to 2 along s is
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If the mass is constant
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The work is the variation of kinetic energy
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The kinetic energy is defined as
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If F is such that W12 is always the same no matter s,
F is called conservative.
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F is conservative if

0d = F s
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The work in terms of the potential is

12 1 2 2 1W V V T T= − = −

We have

1 1 2 2T V T V+ = +

Thus

If F is conservative, it can be written as the 
negative of the gradient of a scalar potential V that 
depends only on r.

( )V= −F r



Energy conservation for a particle

If F is conservative, then the E = T + V is constant.



Mechanics of 
a system of particles



Consider a system of 2 isolated particles
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The total momentum variation is 1 2d dd

dt dt dt
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If the two particles are isolated: 1 2 0
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For each body, 1 2
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Thus,                     (Newton’s third law)21 12= −F F

1 2= +p p pThe total momentum is
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Consider a system of N particles

Newton’s second law determines the motion of particle i 
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The center of mass
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Position of the center of mass 
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We get Newton’s second law for the sum over all particles
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“The center of mass moves as if the total external 
force were acting on the entire mass of the system 
concentrated at the center of mass.” 

Goldstein, Classical mechanics. 1980 
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Momentum of the center of mass (total mass is constant)
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Conservation of linear momentum of 
a system of particles

If the total external force is zero, the total linear momentum is conserved.

0 is constant
d

dt
= →

P
P



Time-derivative of the total angular momentum
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Example with N = 2
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Time-derivative of the total angular momentum
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For central forces, the total angular momentum is related to the total 
external torque through

( )ed

dt
=

L
N

Conservation of angular momentum of 
a system of particles under central forces

Therefore, if the total external torque is zero, the total angular momentum 
is conserved.

0  is constant
d

dt
= →

L
L
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Lab (absolute) reference and center of mass reference:  
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The angular momentum about point O is the angular momentum of the 
center of the mass plus the angular momentum of the motion about the 
center of mass.

If the center of mass is at rest, the total angular momentum does not 
depend on a reference point.

We can show that

See the demonstration 
in the appendix to the 
presentation
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The total kinetic energy is the kinetic energy of the center of mass plus 
the kinetic energy about the center of mass.

See the demonstration 
in the appendix to the 
presentation



12 A BW V V= −

But only if 
    1) the external forces are conservative

   2) the internal forces are conservative and central

( )ji ij i jV= − −F r r

( )e

i i iV= −F

See the demonstration 
in the appendix to the 
presentation

The work of a system of particles is the variation of their potential energy



12 B AW T T= −

The work of a system of particles is the variation of their kinetic energy

See the demonstration 
in the appendix to the 
presentation



12 A B B AW V V T T= − = −

Putting everything together

A A B BT V T V+ = +

Thus



Energy conservation for a system of particles

If the external force is conservative and the internal forces are conservative 
and central, then E = T + V is constant.



Reference frames
(toward special relativity)



youtu.be/qdycfWfAtsM 

https://youtu.be/qdycfWfAtsM


Another math remainder



youtu.be/p_di4Zn4wz4 

https://youtu.be/p_di4Zn4wz4


A differential equation is an equation relating unknown functions and their 
derivatives.
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( ) 0
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f x
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Example:

What’s f(x) satisfying this equation?

Differential equations



Differential equations

More examples:
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Maxwell equations

en.wikipedia.org/wiki/List_of_named_differential_equations 

https://en.wikipedia.org/wiki/List_of_named_differential_equations
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Most time, we can’t get an analytical solution. 
We must resort to numerical approximations.

For example

( )
( )

df x
f x

dx
=

( )
( )

f x
f x

x


→ =



( ) ( )
( )

f x x f x
f x

x

+  −
=



( ) ( )( )1f x x f x x+  = + 



( ) ( )( )1f x x f x x+  = + 

( )0 1

1

f

x

=

 =

Suppose

( ) ( ) ( )0 1 1 1 1 2f x f+  = = + =

( ) ( ) ( )1 2 2 1 1 4f x f+  = = + =

( ) ( ) ( )2 3 4 1 1 8f x f+  = = + =

( ) ( ) ( )3 4 8 1 1 16f x f+  = = + =

0 1 2 3 4
0

2

4

6

8

10

12

14

16

18

f(
x
)

x

 Exact (analytical)

 Numerical (x = 1)



EOM integration
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One of the most popular methods to integrate this 
differential equation is the Velocity Verlet.

Given the initial conditions R0 and v0, we want to integrate 

where

E(R) is the Born-Oppenheimer potential energy and
F(e) are the external forces.
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where N is the number of nuclei.

Thus, we must solve 3N coupled differential equations of type
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Simple example

F Mg= −

Constant force

( ) ( )0 00 ; 0x x v v= =

Initial conditions
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1 particle in 1 dimension



Velocity Verlet

52

For each nucleus  and coordinate xi (x1 = x, x2 = y, x3 = z):

Swope et al. J. Chem. Phys. 76, 637 (1982)
For a recent method: Predescu et al. Mol Phys 2012, 110, 967
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Molecular dynamics with 
Velocity Verlet



Integration step size



Time-step

55
Schlick, Barth and Mandziuk, Annu. Rev. Biophys. Struct. 1997, 26, 181



Time-step

56

Time step should not be larger than 1 fs (1/10v).

t = 0.5 fs assures a good level of conservation of energy.

Exceptions requiring shorter steps: 
• Dynamics close to a conical intersection
• Dissociation processes
• Long timescale



10 ps/0.1 fs = 100,000 time steps



Boekholt; Zwart. Comput Astrophys Cosmol 2015, 2, 2
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Integration stability:
time step effect
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Velocity Verlet

• A-SBH 33D
• dynamics on E2
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• dynamics on E2
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Velocity Verlet

• A-SBH 33D
• dynamics on E2



L I G H T  A N D

M O L E C U L E S

Velocity Verlet is a symplectic integrator. 

It means that it tends to conserve total energy, even when 
an error is introduced due to discretization (finite time 
steps). 

Not all integrators are symplectic. 
Runge-Kutta, for instance, is not symplectic, and the total 
energy tends to drift.

en.wikipedia.org/wiki/Symplectic_integrator 

https://en.wikipedia.org/wiki/Symplectic_integrator


Integration stability:
gradient accuracy effect



Effect of force uncertainty
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Effect of force uncertainty

• A-SBH 33D
• dynamics on E1
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Geometrical accuracy
We want results better than 0.2 Å. 



Effect of force uncertainty

• A-SBH 33D
• dynamics on E1
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F = f0 (t)

f0 = 5 eV/Å

Geometrical accuracy
We want results better than 0.2 Å. 



f0 = 5 eV/Å

f0 = 0.5 eV/Å



f0 = 5 eV/Å

f0 = 0.05 eV/Å

f0 = 0.5 eV/Å



f0 = 5 eV/Å

f0 = 0.005 eV/Å

f0 = 0.5 eV/Å

f0 = 0.05 eV/Å



We must predict forces better than 
0.5 eV/Å (0.001 Hartree/Bohr) 

(Maximum absolute error)



To know more:

Classical mechanics
• Goldstein, Classical mechanics. 1980. Ch 1
• en.wikipedia.org/wiki/Verlet_integration 

Available for download at:
amubox.univ-amu.fr/s/xXAiMZrDPb9RMRX
Ask me for the password. 

https://en.wikipedia.org/wiki/Verlet_integration
https://amubox.univ-amu.fr/s/xXAiMZrDPb9RMRX


Demonstration of equation
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Demonstration of equation
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We check the total kinetic energy like we did for angular momentum:
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Demonstration of equations

12 B AW T T= −

12 A BW V V= −
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The work of a system of particles is the variation of their kinetic energy
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The work in terms of potential energies
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If the external forces are conservative 
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