Basic Concepts of Dirac Notation

Exercise 1. Write the following **quantum states** as vectors.

- a) $|\psi_a\rangle = \frac{1}{\sqrt{2}} (|\phi_1\rangle + |\phi_2\rangle)$
- b) $|\psi_b\rangle = i|\chi_2\rangle \quad \{|\chi_i\rangle\}, i = 1\cdots 3$

c)
$$\langle \psi_b | = | \psi_b \rangle^{\dagger}$$

Exercise 2. Write the **bra** $\langle \psi |$ for the **ket** $|\psi \rangle$ with components:

$$\left|\psi\right\rangle = \begin{pmatrix} i\\0\\0 \end{pmatrix}$$

Exercise 3. Given two states $|\psi\rangle$ and $|\phi\rangle$, express their **inner product** $\langle \phi |\psi \rangle$ in terms of their components if:

$$|\psi\rangle = \begin{pmatrix} i\\0\\0 \end{pmatrix}$$
 and $|\phi\rangle = \begin{pmatrix} 0\\1\\0 \end{pmatrix}$

Exercise 4. For the same $|\psi\rangle$ and $|\phi\rangle$ of Exercise 3, express their **outer product** $|\psi\rangle\langle\phi|$ in terms of their components.

Exercise 5. Given ket $|\psi\rangle$ with components

$$\left|\psi\right\rangle = i \begin{pmatrix} 1\\1 \end{pmatrix}$$

a) Is it **normalized**?

b) If not, normalize it.

Exercise 6. Prove that $|\psi_1\rangle$ and $|\psi_2\rangle$ with components

$$|\psi_1\rangle = \begin{pmatrix} 1\\ 0 \end{pmatrix}, |\psi_2\rangle = \begin{pmatrix} 0\\ 1 \end{pmatrix}$$

form a basis that is orthogonal, orthonormal, and complete.

Exercise 7. For $|\psi_1\rangle$ and $|\psi_2\rangle$ defined in Exercise 6, compute

$$\left|\Phi\right\rangle = \frac{1}{\sqrt{2}} \left(\left|\psi_{1}\right\rangle + \left|\psi_{2}\right\rangle\right)$$

Exercise 8. Consider the **operator** \hat{O} and the ket $|\psi\rangle$ given as

$$\hat{O} = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}, \quad |\psi\rangle = \frac{i}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

Give $\hat{O}|\psi\rangle$.

Exercise 9. With the definitions in Exercise 8, give the **expected value** of \hat{O}

$$E = \left\langle \psi \left| \hat{O} \right| \psi \right\rangle$$

Exercise 10. Consider that $|\psi(t)\rangle$ evolves in time according to

$$\left|\psi(t)\right\rangle = e^{i\hat{H}t}\left|\psi(0)\right\rangle$$

where \hat{H} is the **Hamiltonian operator**. If

$$\hat{H} = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}, \quad |\psi(0)\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

2

estimate $|\psi(1)\rangle$ to the first order.

Exercise 11. Consider

$$|\Phi\rangle = \frac{1}{\sqrt{2}} (|\psi_1\rangle + |\psi_2\rangle)$$

Express $|\Phi\rangle$ in terms of these other two orthogonal vectors $|\varphi_1\rangle$ and $|\varphi_2\rangle$. Suppose that $|\varphi_1\rangle$ and $|\varphi_2\rangle$ form a **complete basis** such that $|\varphi_1\rangle\langle\varphi_1|+|\varphi_2\rangle\langle\varphi_2|=I$.

Exercise 12. Consider

$$\left|\Phi\right\rangle = \sum_{i} a_{i} \left|\psi_{i}\right\rangle$$

Express $|\Phi\rangle$ in terms of the **orthonormal basis** $\{|\varphi_i\rangle\}$. Suppose that $\{|\varphi_i\rangle\}$ form a complete basis such that $\sum_i |\varphi_i\rangle\langle\varphi_i| = I$.

Exercise 13. Consider

$$|\Phi\rangle = \int a(x) |x\rangle dx$$

Express $|\Phi\rangle$ in terms of the orthogonal basis $\{|\xi\rangle\}$. Suppose that $\{|\xi\rangle\}$ form a complete basis such that $\int |\xi\rangle \langle \xi | d\xi = I$.

Exercise 14. Consider the state

$$\Phi \rangle = \frac{1}{\sqrt{2}} \left(|\psi_1\rangle + |\psi_2\rangle \right)$$

Give the **probability** of occurrence of output ψ_1 in an experiment, supposing that $|\psi_1\rangle$ and $|\psi_2\rangle$ forms an orthonormal basis.

Exercise 15. Consider the state

$$|\Phi\rangle = \sum_{i} a_{i} |\psi_{i}\rangle$$

Give the probability of occurrence of output ψ_1 in an experiment, supposing that $\{|\psi_i\rangle\}$ is an orthonormal basis.

Exercise 16. Consider the state

$$|\Phi\rangle = \int a(x) |x\rangle dx$$

Give the probability of occurrence of output x = r in an experiment, supposing that $\{|x\rangle\}$ is an orthonormal basis.

Exercise 17. The state of a system is described by the basis $|\psi_1\rangle$ and $|\psi_2\rangle$ with components

$$|\varphi_1\rangle = \begin{pmatrix} 1\\ 0 \end{pmatrix}, |\varphi_2\rangle = \begin{pmatrix} 0\\ 1 \end{pmatrix}$$

A second system is described by the basis

$$|\varphi_1\rangle = \begin{pmatrix} 1\\ 0 \end{pmatrix}, |\varphi_2\rangle = \begin{pmatrix} 0\\ 1 \end{pmatrix}$$

Use a tensor product to build a basis to describe the two systems together.

Exercise 18. Consider the state

$$\left|\psi\right\rangle = \begin{pmatrix} c_1 \\ c_2 \end{pmatrix}$$

Build the **density matrix** $\hat{\rho} = |\psi\rangle\langle\psi|$ for this state.

Exercise 19. For the state $|\psi\rangle$ of Exercise 18, show that the coherences satisfy $\rho_{12} = \rho_{21}^*$.

Exercise 20. For the state $|\psi\rangle$ of Exercise 18, show that the populations satisfy $\rho_{11} + \rho_{22} = 1$.

Exercise 21. Determine the density matrix for the state $|\psi\rangle = \sum_{i} c_{i} |\phi_{i}\rangle$.

Exercise 22. Consider the density matrix of Exercise 21.

- a) Determine the population of state 2.
- b) Determine the coherence between states 1 and 2.

Assume that $\{ |\phi_i\rangle \}$ is orthonormal.

Exercise 23. Consider the operation trace:

$$Tr\left[\hat{O}\right] = \sum_{i} \left\langle \phi_{i} \left| \hat{O} \right| \phi_{i} \right\rangle$$

Consider also the basis $\left\{ \left| o_{i} \right\rangle \right\}$ of eigenstates of \hat{O}

$$\hat{O} \left| o_i \right\rangle = o_i \left| o_i \right\rangle$$

Show that if the trace is taken on the basis $\{|o_i\rangle\}$, we have

$$Tr\left[\hat{\rho}\hat{O}\right] = \left\langle\hat{O}\right\rangle$$

Exercise 24. Consider the state:

$$|\Psi\rangle = \frac{1}{\sqrt{2}} (|a_1\rangle|b_1\rangle + |a_2\rangle|b_2\rangle).$$

Verify that

$$\hat{\rho} = \frac{1}{2} \sum_{i,j=1}^{2} |a_i\rangle \langle a_j| \otimes |b_i\rangle \langle b_j|$$

Exercise 25. Consider the density matrix of Exercise 24:

$$\hat{\rho} = \frac{1}{2} \sum_{i,j=1}^{2} |a_i\rangle \langle a_j| \otimes |b_i\rangle \langle b_j|.$$

Consider also the state $|b_i\rangle$ can be expanded in terms of an orthonormal basis $\{|\phi_k\rangle\}$ such that

$$\left|b_{i}\right\rangle = \sum_{k} c_{ik} \left|\phi_{k}\right\rangle.$$

Calculate the reduced density matrix of subsystem A by tracing over system B:

$$\hat{\rho}_{A} = Tr_{B}\left[\hat{\rho}\right] = \sum_{k} \left\langle \phi_{k} \left| \hat{\rho} \right| \phi_{k} \right\rangle$$

and show that

$$\hat{\rho}_{A} = \frac{1}{2} \left(|a_{1}\rangle\langle a_{1}| + |a_{1}\rangle\langle a_{2}| + |a_{2}\rangle\langle a_{1}|\langle b_{1}|b_{2}\rangle + |a_{2}\rangle\langle a_{2}|\langle b_{2}|b_{2}\rangle \right)$$