

Neural networks

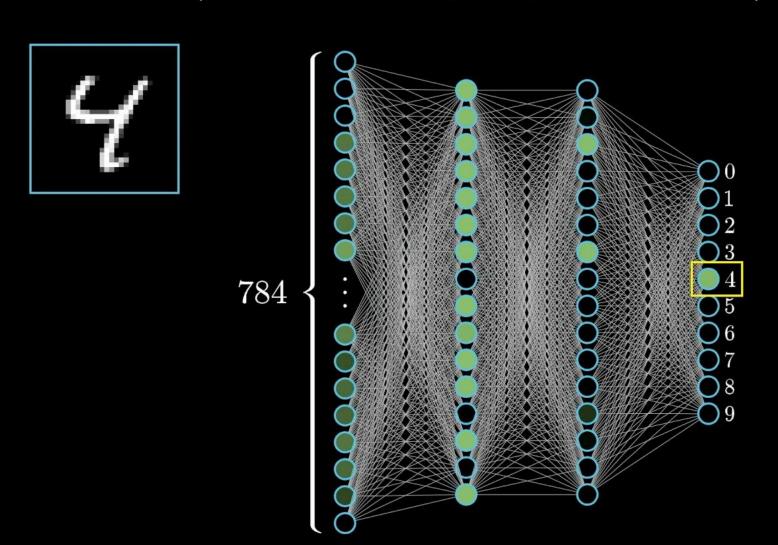
What is a Neural Network?

Adapted from:

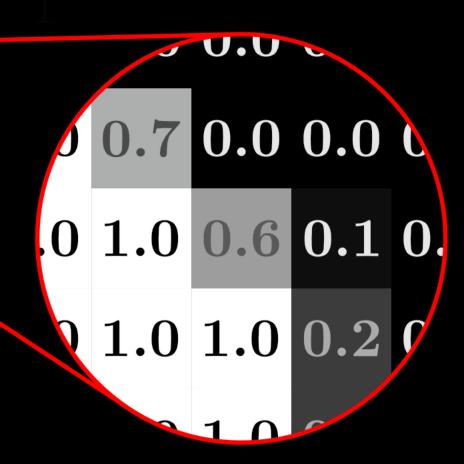
www.3blue1brown.com/lessons/neural-networks

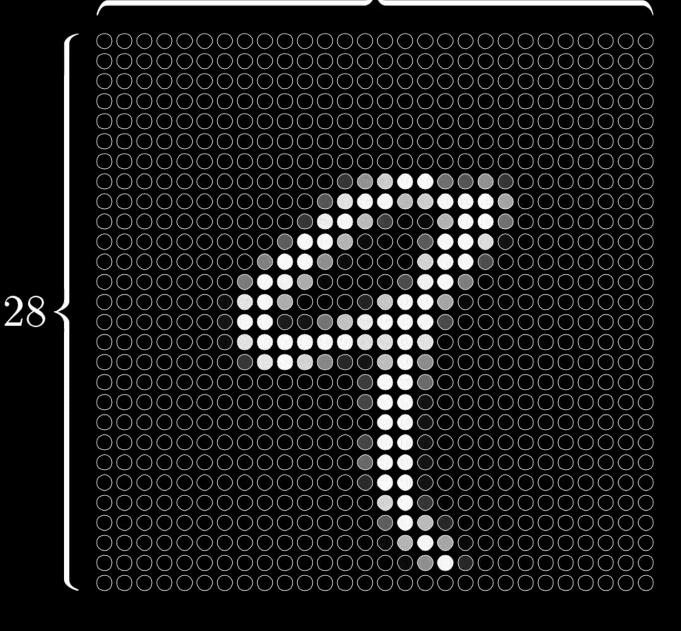
Plain vanilla

(aka "multilayer perceptron")

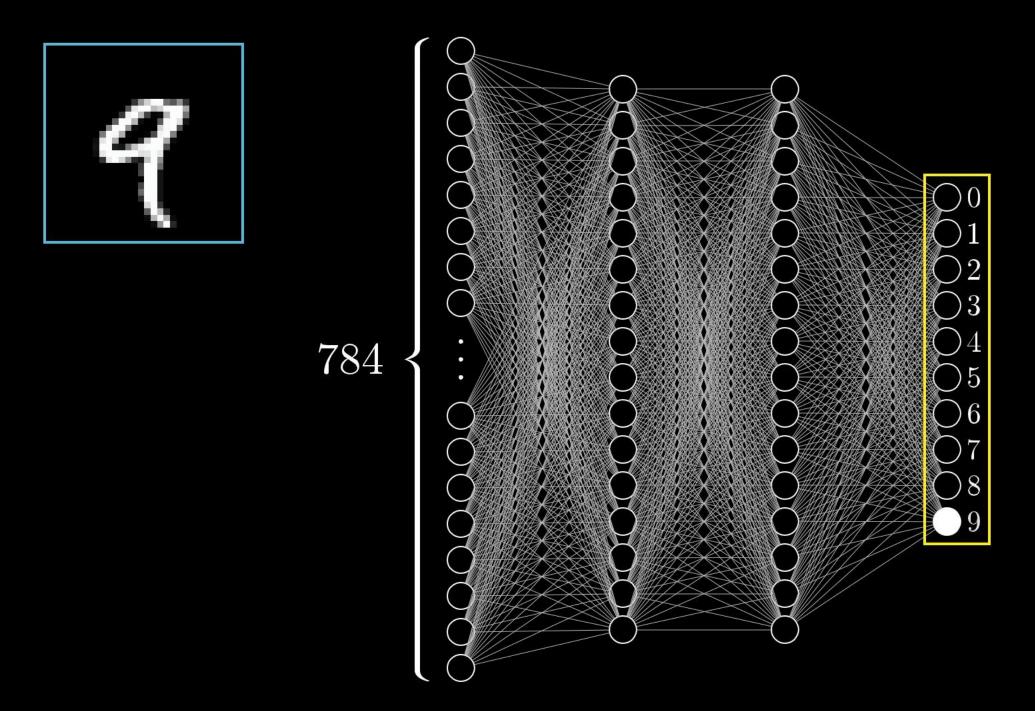


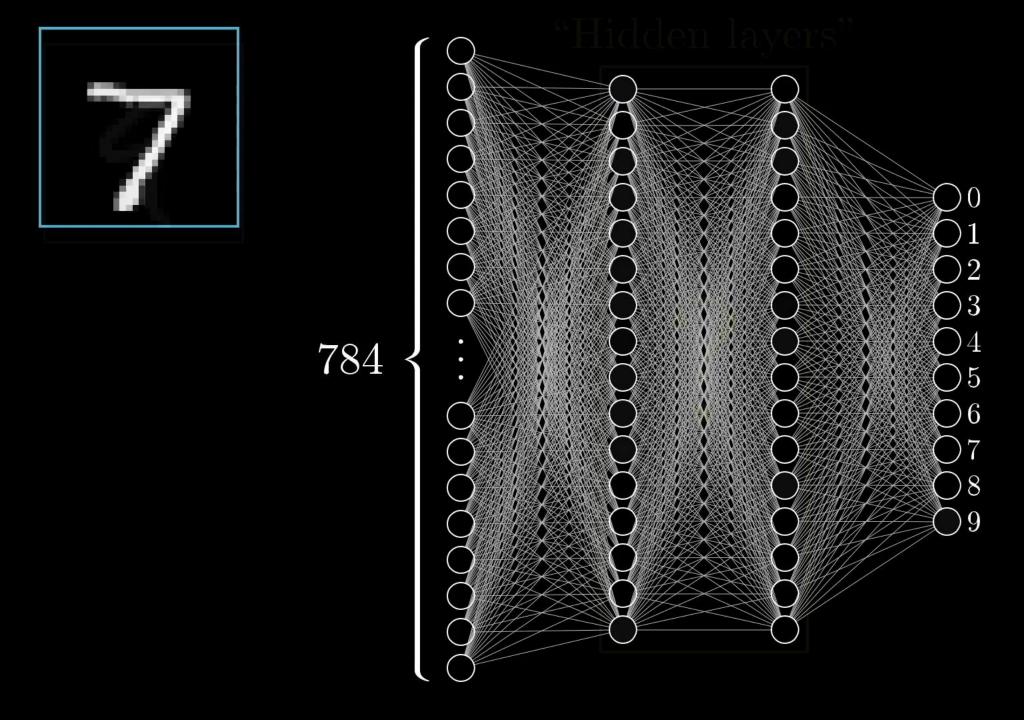
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.5 0.9 0.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.6 0.1 0.1 0.0 0.0 0.0 0.0 1.0 1.0 0.9 0.5 0.5 0.5 0.5 0.7 1.0 1.0 1.0 1.0 2.2 0.0 0.1 0.0 0.8 0.8 0.8 1.0 1.0 1.0 1.0 0.9 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.2 0.2 0.2 0.2 0.6 1.0 1.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.7 1.0 0.1 0.0 0.0 0.0 0.1 0.4 0.9 1.0 1.0 0.9 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0





 $28 \times 28 = 784$

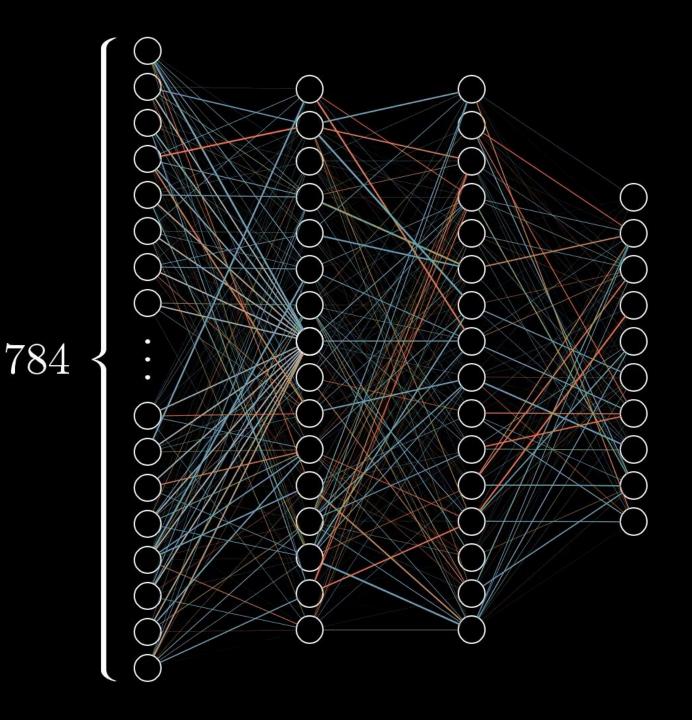






$$\sigma(w_1a_1 + w_2a_2 + w_3a_3 + \cdots + w_na_n = 10)$$
"bias"

Only activate meaningfully when weighted sum > 10

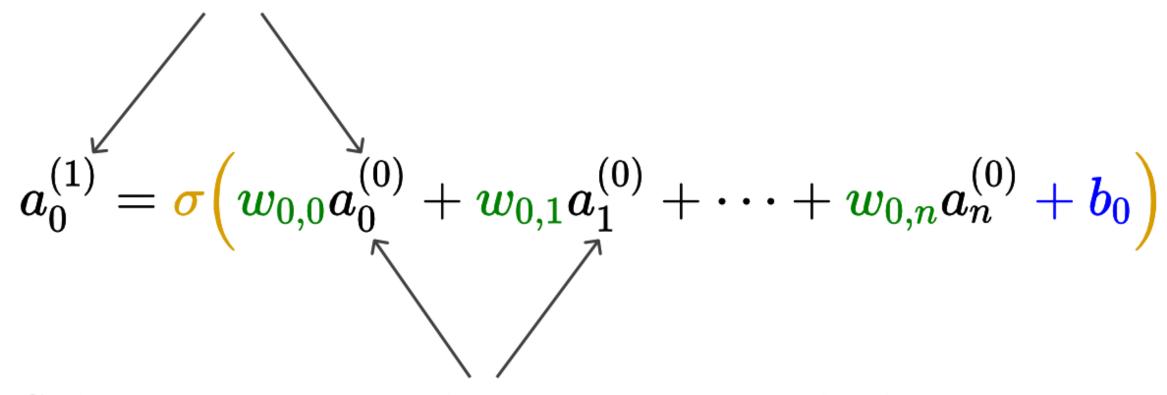


$$784 \times 16 + 16 \times 16 + 16 \times 10$$
 weights

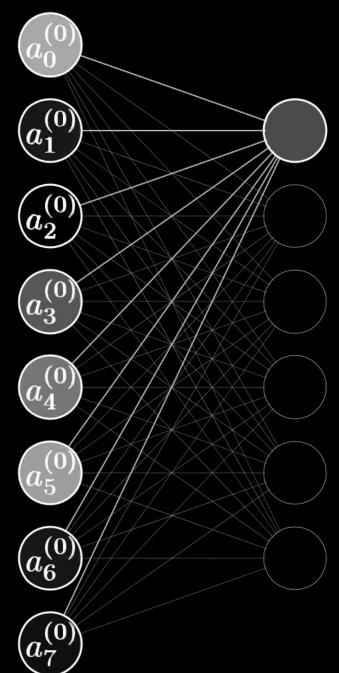
$$16 + 16 + 10$$
 biases

13,002

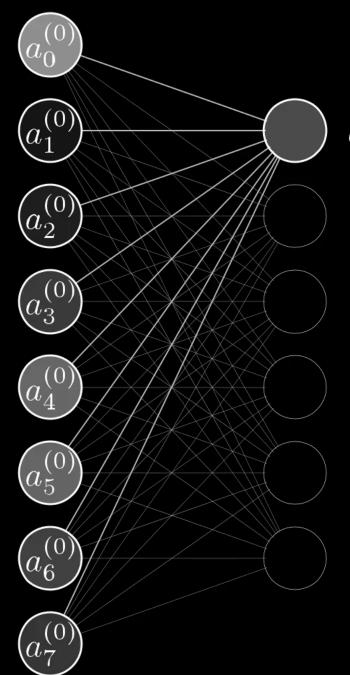
Superscript corresponds to the layer



Subscript corresponds to a neuron in the layer



$$a_0^{(1)} = \overset{\downarrow}{\sigma} \left(w_{0,0} \ a_0^{(0)} + w_{0,1} \ a_1^{(0)} + \dots + w_{0,n} \ a_n^{(0)} + b_0 \right)$$
Bias



$$a_0^{(1)} = \overset{\downarrow}{\sigma} \left(w_{0,0} \ a_0^{(0)} + w_{0,1} \ a_1^{(0)} + \dots + w_{0,n} \ a_n^{(0)} + b_0 \right)$$
Bias

$$a_0^{(0)}$$
 $a_1^{(0)}$
 \vdots
 $a_n^{(0)}$

$$a_{0}^{(0)}$$
 $a_{1}^{(0)}$
 $a_{2}^{(0)}$
 $a_{3}^{(0)}$
 $a_{3}^{(0)}$
 $a_{4}^{(0)}$
 $a_{5}^{(0)}$
 $a_{6}^{(0)}$

$$a_0^{(1)} = \overset{\downarrow}{\sigma} \left(w_{0,0} \ a_0^{(0)} + w_{0,1} \ a_1^{(0)} + \dots + w_{0,n} \ a_n^{(0)} + b_0 \right)$$
Bias

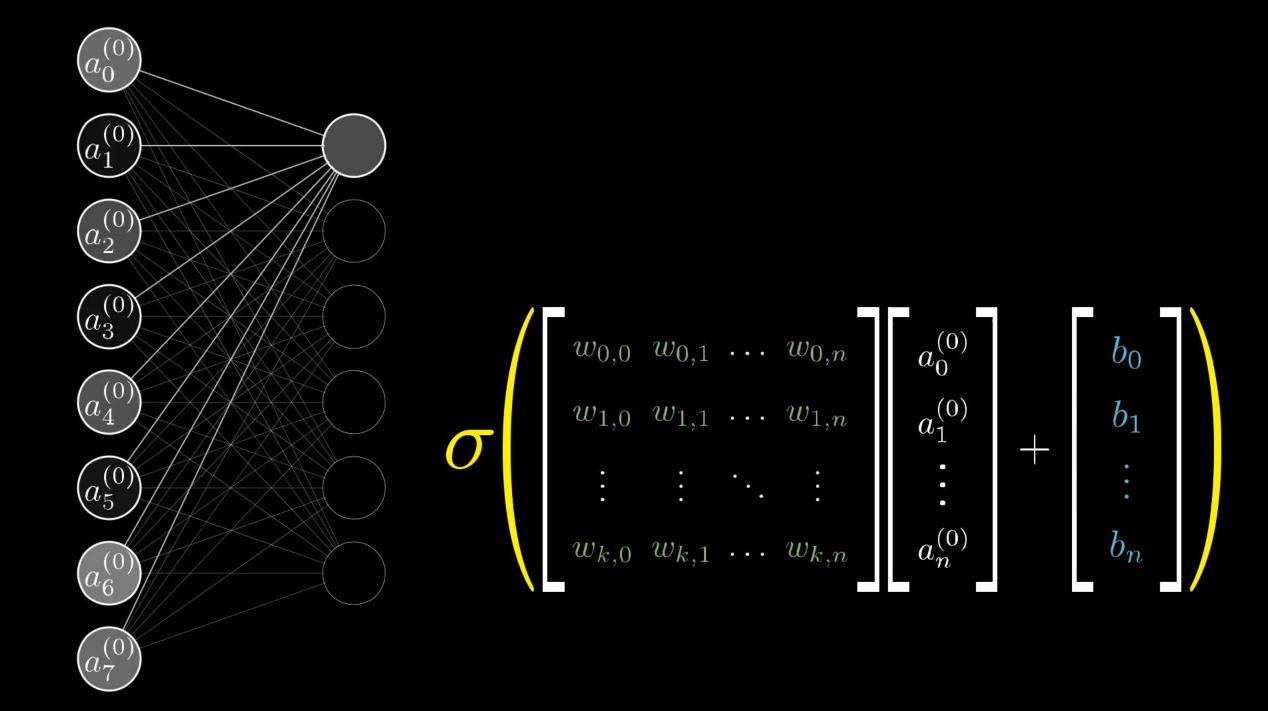
$$a_{0}^{(0)}$$
 $a_{1}^{(0)}$
 $a_{2}^{(0)}$
 $a_{3}^{(0)}$
 $a_{3}^{(0)}$
 $a_{4}^{(0)}$
 $a_{5}^{(0)}$
 $a_{6}^{(0)}$

$$a_0^{(1)} = \overset{\downarrow}{\sigma} \left(w_{0,0} \ a_0^{(0)} + w_{0,1} \ a_1^{(0)} + \dots + w_{0,n} \ a_n^{(0)} + b_0 \right)$$
Bias

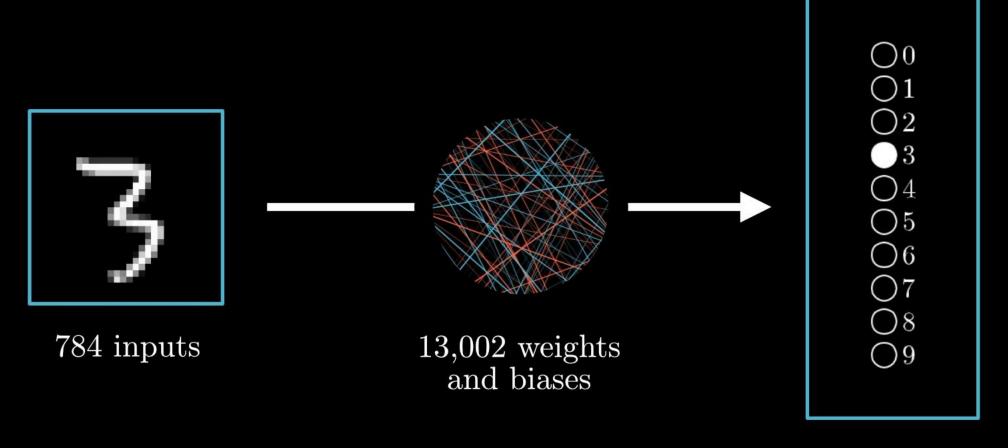
$$a_{0}^{(0)}$$
 $a_{1}^{(0)}$
 $a_{2}^{(0)}$
 $a_{3}^{(0)}$
 $a_{3}^{(0)}$
 $a_{4}^{(0)}$
 $a_{5}^{(0)}$
 $a_{6}^{(0)}$

$$a_0^{(1)} = \overset{\downarrow}{\sigma} \left(w_{0,0} \ a_0^{(0)} + w_{0,1} \ a_1^{(0)} + \dots + w_{0,n} \ a_n^{(0)} + b_0 \right)$$
Bias

$$w_{0,0} \ w_{0,1} \dots w_{0,n}$$
 $w_{1,0} \ w_{1,1} \dots w_{1,n}$
 $\vdots \ \vdots \ \ddots \ \vdots$
 $w_{k,0} \ w_{k,1} \dots w_{k,n}$



Neural network function



10 outputs

A NN with L hidden layers takes an input vector \mathbf{x} and returns an output vector \mathbf{y} though the forward equations chain

$$\mathbf{a}^{(1)} = \sigma \left(\mathbf{w}^{(0)} \mathbf{x} + \mathbf{b}^{(0)} \right)$$

$$\mathbf{a}^{(2)} = \sigma \left(\mathbf{w}^{(1)} \mathbf{a}^{(1)} + \mathbf{b}^{(1)} \right)$$

$$\vdots$$

$$\mathbf{a}^{(L)} = \sigma \left(\mathbf{w}^{(L-1)} \mathbf{a}^{(L-1)} + \mathbf{b}^{(L-1)} \right)$$

$$\mathbf{y} = \sigma \left(\mathbf{w}^{(L)} \mathbf{a}^{(L)} + \mathbf{b}^{(L)} \right)$$

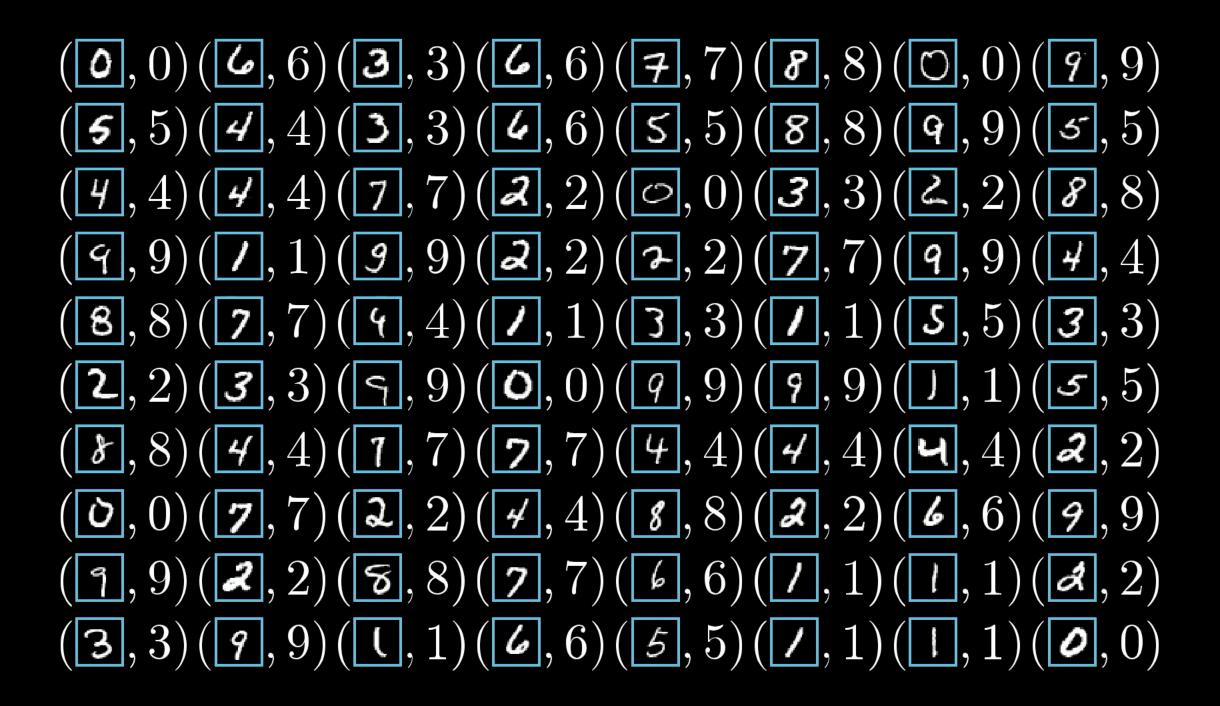
The NN is a function of \mathbf{x} with a parametric dependence on \mathbf{w} and \mathbf{b}

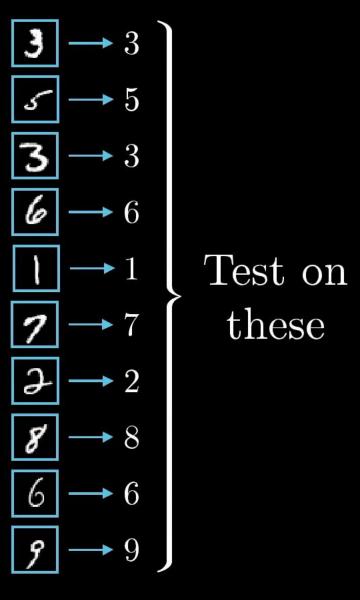
$$\mathbf{y} = f\left(\mathbf{x}; \mathbf{w}, \mathbf{b}\right)$$

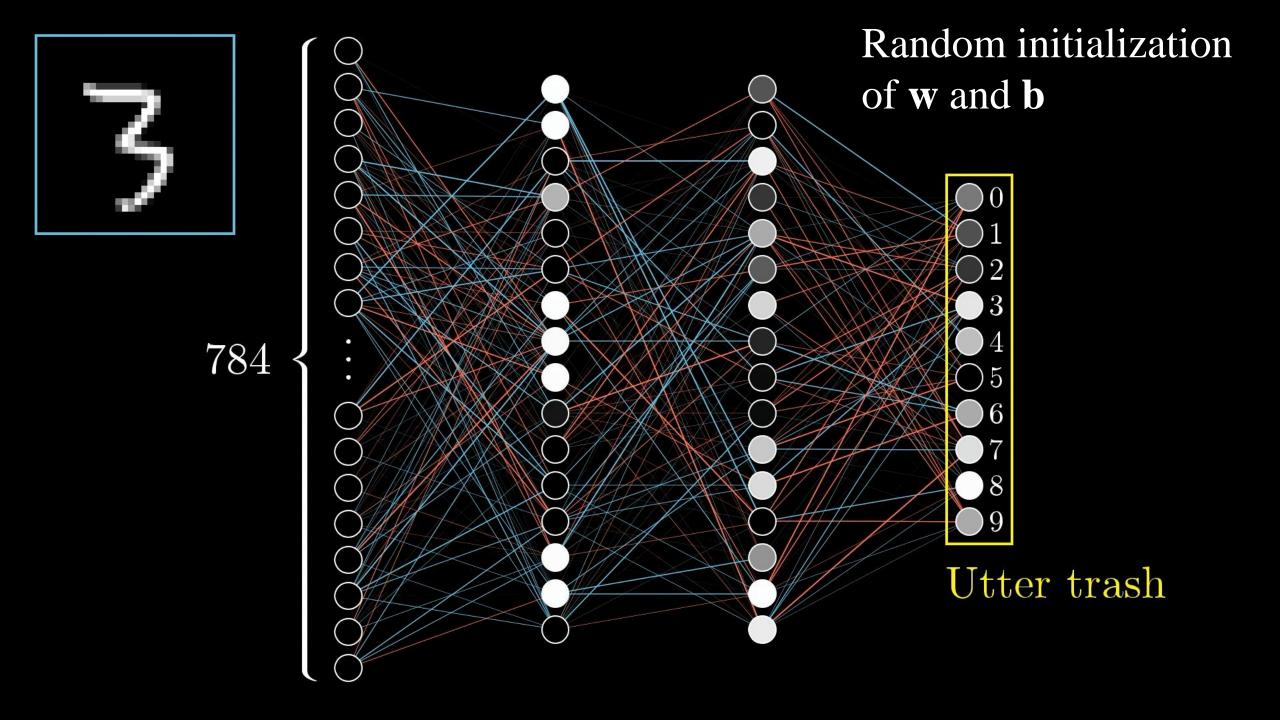
The cost of learning

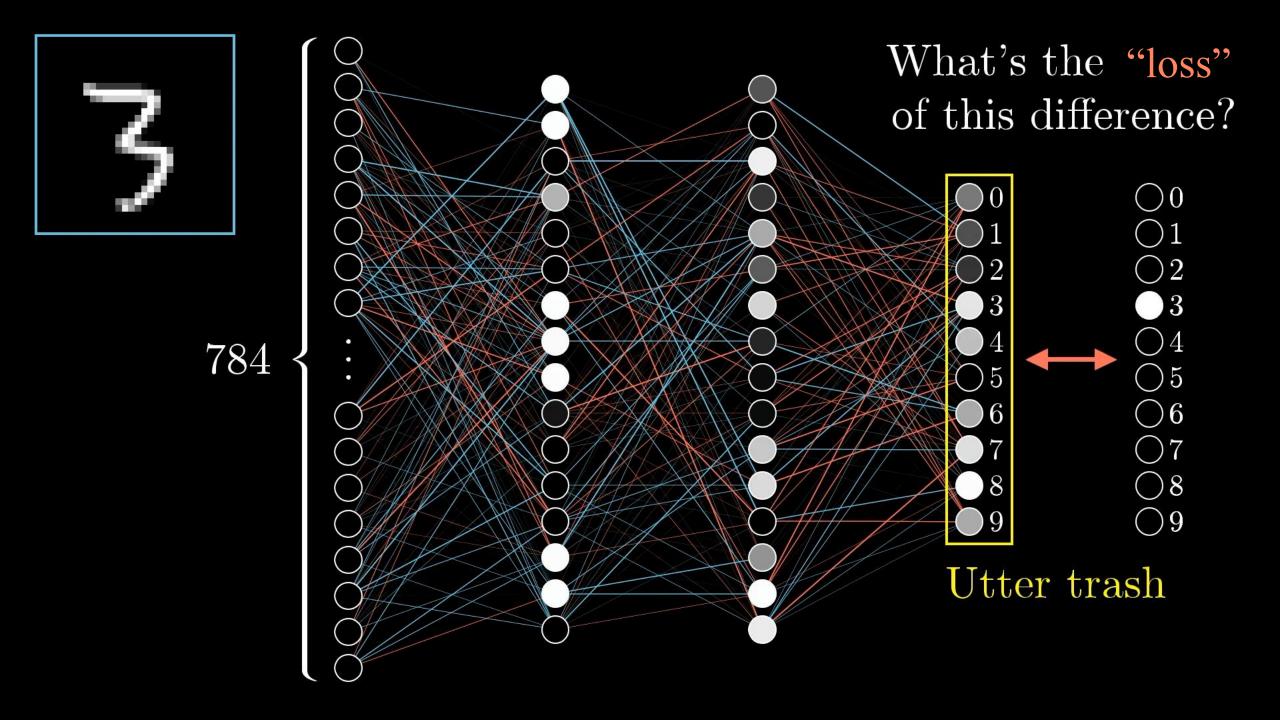
Adapted from:

www.3blue1brown.com/lessons/gradient-descent

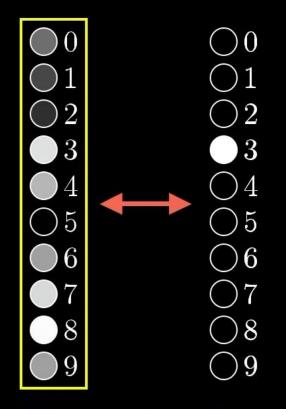






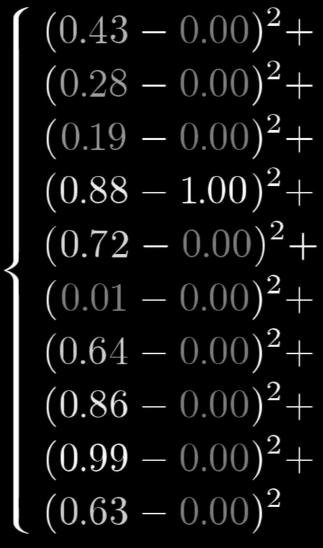


What's the "loss" of this difference?

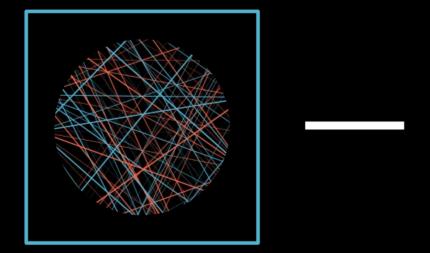


Utter trash

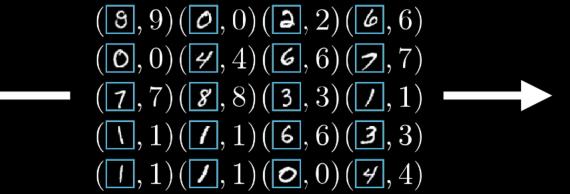
Loss of



Cost function



13,002 weights and biases



Lots of training data

3.37

One number

For each training data k, with true value $\hat{\mathbf{y}}_k$ get the **loss function** over the output neurons

$$\mathcal{L}_{k}\left(\mathbf{w},\mathbf{b}\right) = \frac{1}{N_{out}} \sum_{i=1}^{N_{out}} \left(NN\left(x_{k,i};\mathbf{w},\mathbf{b}\right) - \hat{y}_{k,i}\right)^{2}$$

Considering all training data, get the cost function

$$C(\mathbf{w}, \mathbf{b}) = \frac{1}{N_{train}} \sum_{k=1}^{N_{train}} \mathcal{L}_k(\mathbf{w}, \mathbf{b})$$

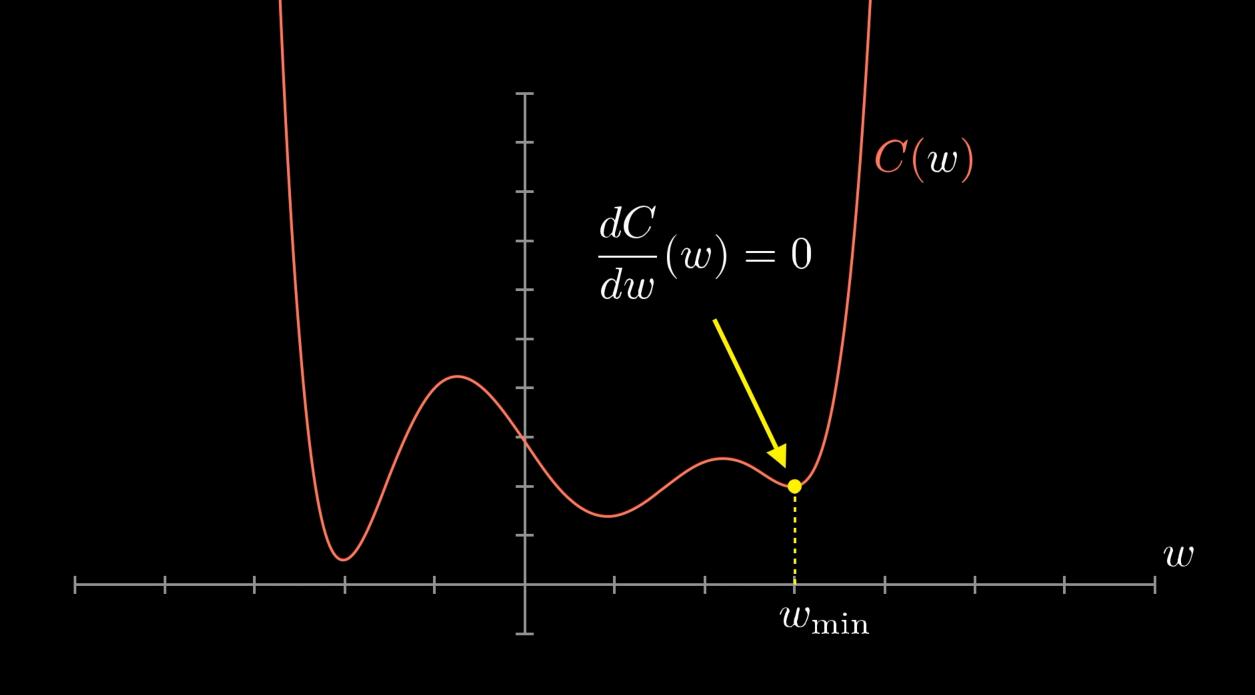
The optimized NN is the one with \mathbf{w} and \mathbf{b} that minimizes $C(\mathbf{w}, \mathbf{b})$

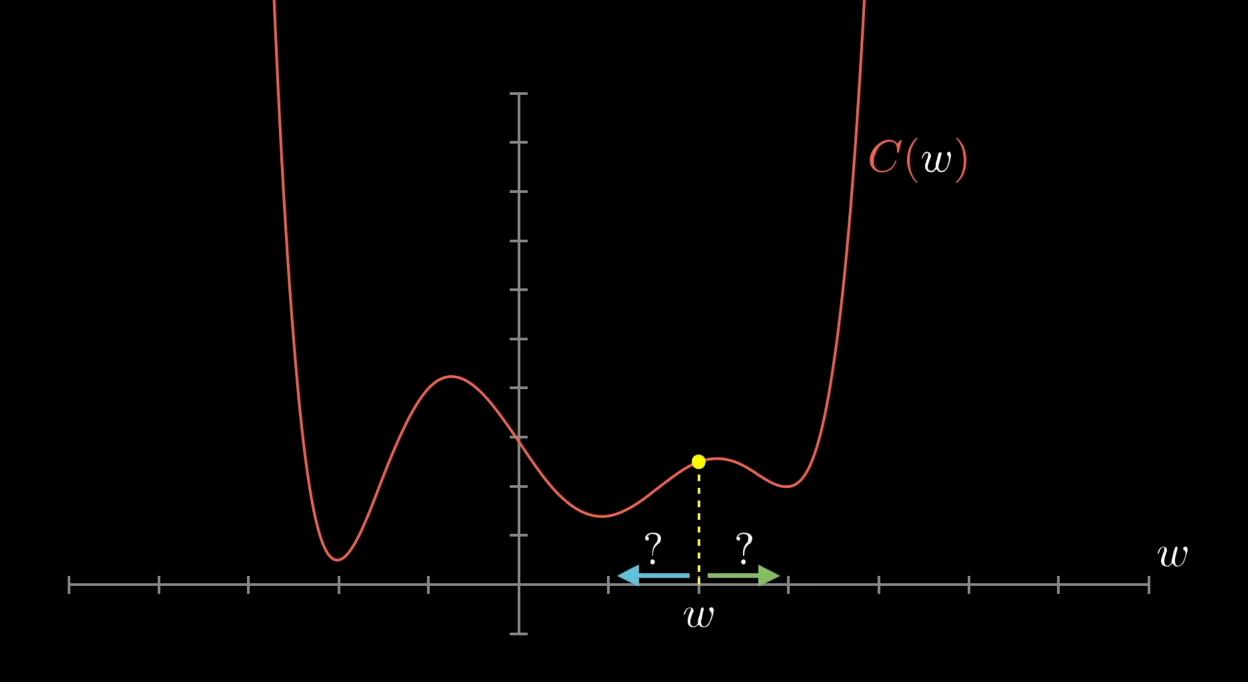
$$\min_{\mathbf{w},\mathbf{b}} C(\mathbf{w},\mathbf{b}) \Rightarrow \nabla_{\mathbf{w},\mathbf{b}} C(\mathbf{w},\mathbf{b}) = 0$$

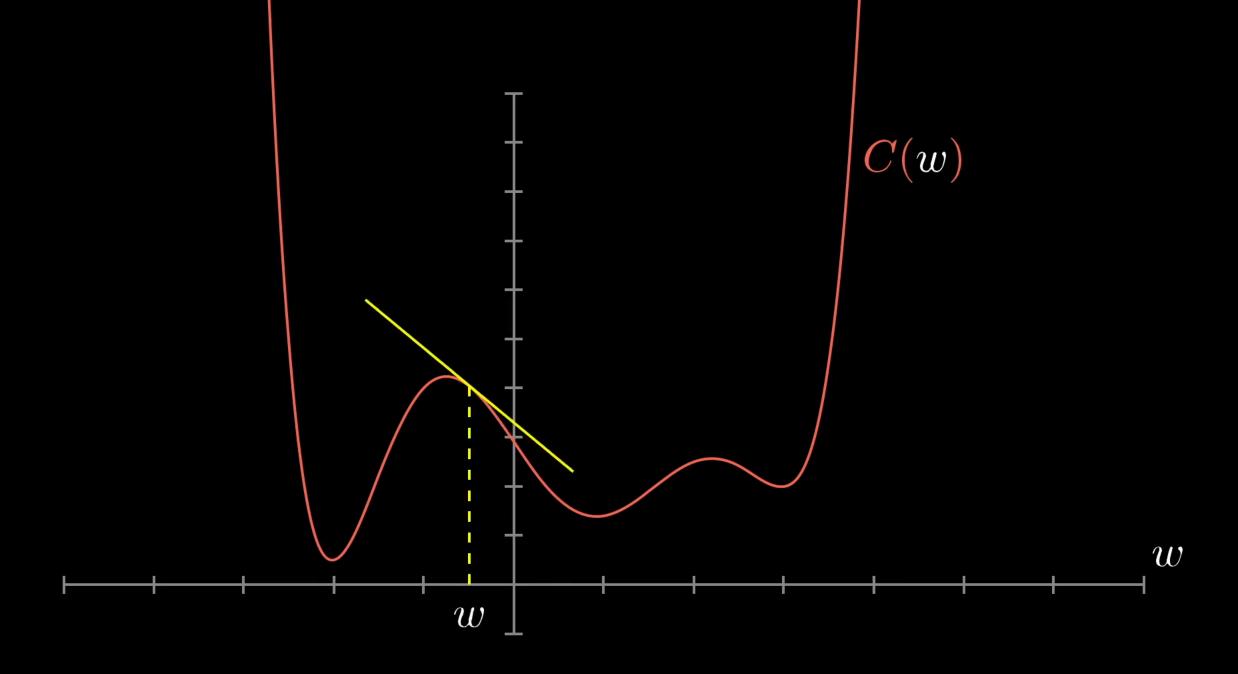
How to Train Your Neural Network

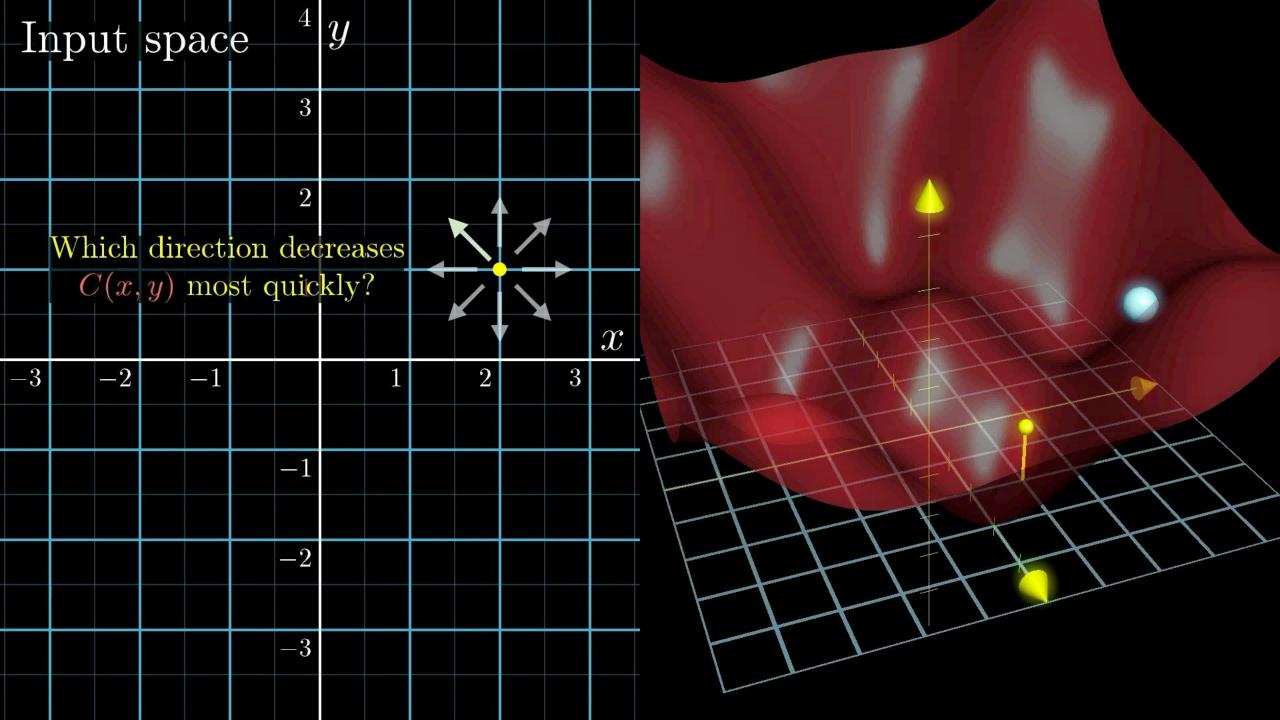
Adapted from:

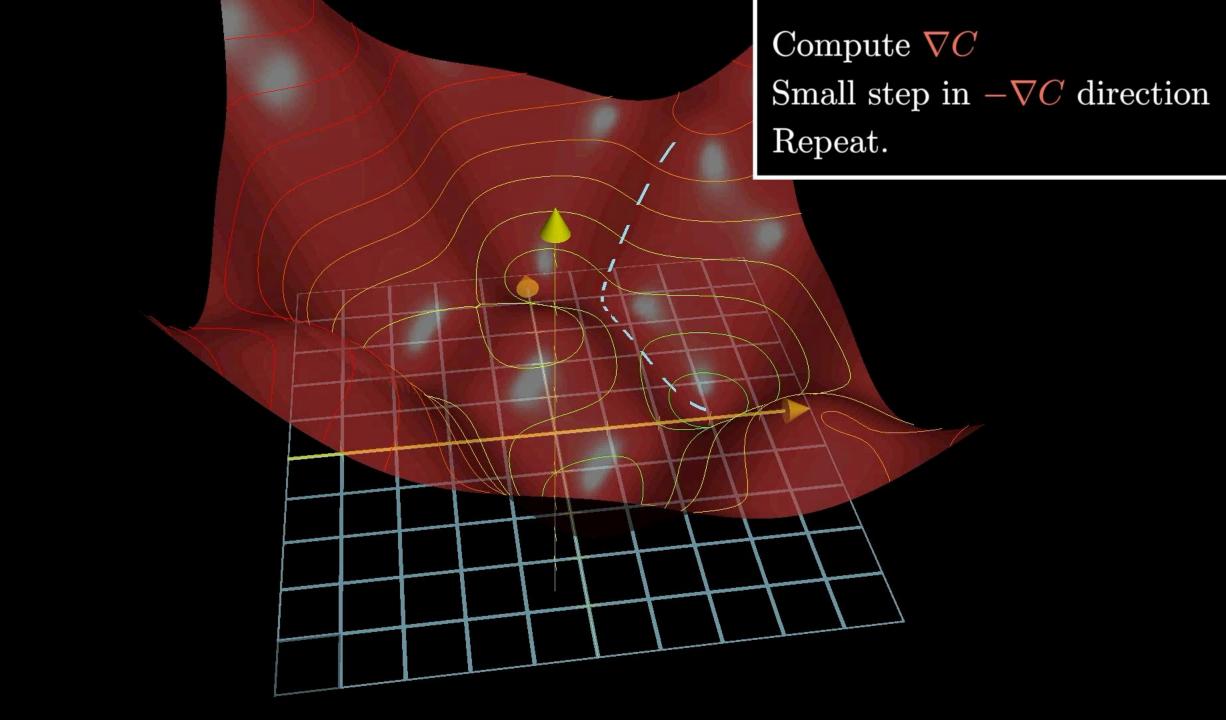
www.3blue1brown.com/lessons/gradient-descent











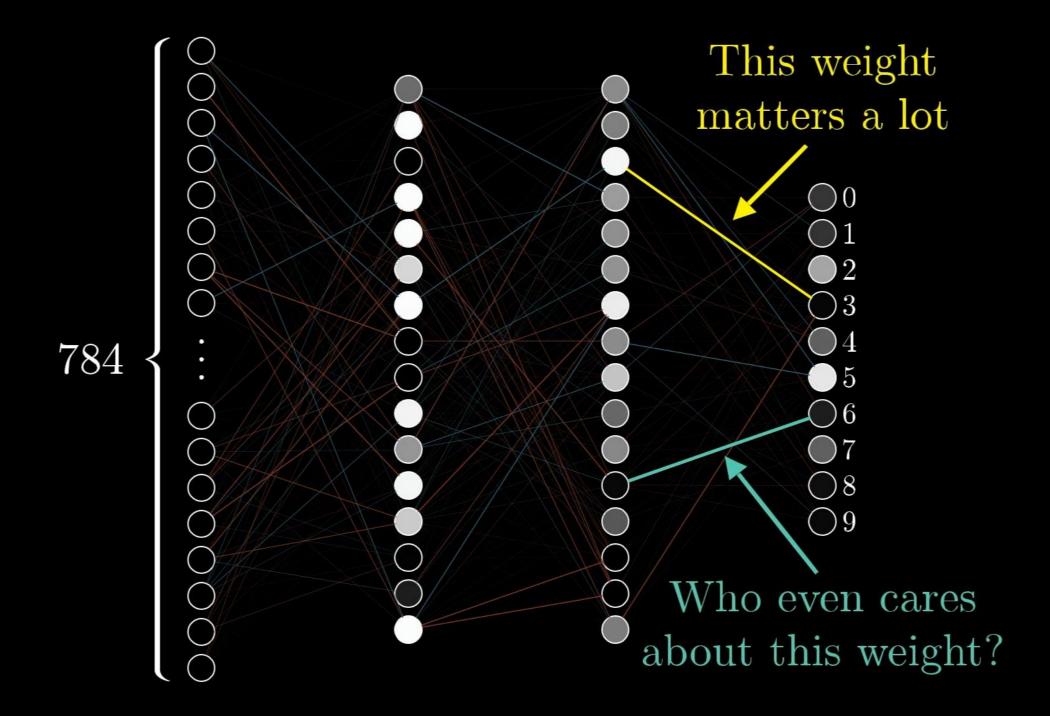
13,002 weights and biases

How to nudge all weights and biases

$$\vec{\mathbf{W}} = \begin{bmatrix} 2.25 \\ -1.57 \\ 1.98 \\ \vdots \\ -1.16 \\ 3.82 \\ 1.21 \end{bmatrix} -\nabla C(\vec{\mathbf{W}}) = \begin{bmatrix} 0.18 \\ 0.45 \\ -0.51 \\ \vdots \\ 0.40 \\ -0.32 \\ 0.82 \end{bmatrix}$$

$$-\nabla C(\vec{\mathbf{W}}) = \begin{bmatrix} 0.31 \\ 0.03 \\ -1.25 \\ \vdots \\ 0.78 \\ -0.37 \\ 0.16 \end{bmatrix}$$

 w_0 should increase somewhat w_1 should increase a little w_2 should decrease a lot $w_{13,000}$ should increase a lot $w_{13,001}$ should decrease somewhat $w_{13,002}$ should increase a little



The minimization is done with **gradient descent**:

$$\mathbf{w}_{m+1} = \mathbf{w}_{m} - \gamma_{m} \frac{\partial C(\mathbf{w}_{m}, \mathbf{b}_{m})}{\partial \mathbf{w}_{m}} \qquad (\gamma_{m} - \text{learning rate})$$

$$\mathbf{b}_{m+1} = \mathbf{b}_{m} - \gamma_{m} \frac{\partial C(\mathbf{w}_{m}, \mathbf{b}_{m})}{\partial \mathbf{b}_{m}}$$

Usually, the gradient is computed for a sub-set of **w** and **b** components chosen at random. It is called **stochastic gradient descent**

Now that we have optimal ${\bf w}$ and ${\bf b}$, we can use the neural network to identify images that were not in the training set.

This is the basics. But there is so much more...

Physics-informed neural networks (PINN)

Integrates partial differential equations expressing physical laws into the NN cost function youtu.be/G hlppUWcsc

Graph neural networks (GNN)

NN for processing data that can be represented as vertices connected by edges distill.pub/2021/gnn-intro/

Convolutional neural networks (CNN)

NN with convolutional layers that capture local patterns and global features in the input data <u>tinyurl.com/convnnet</u>

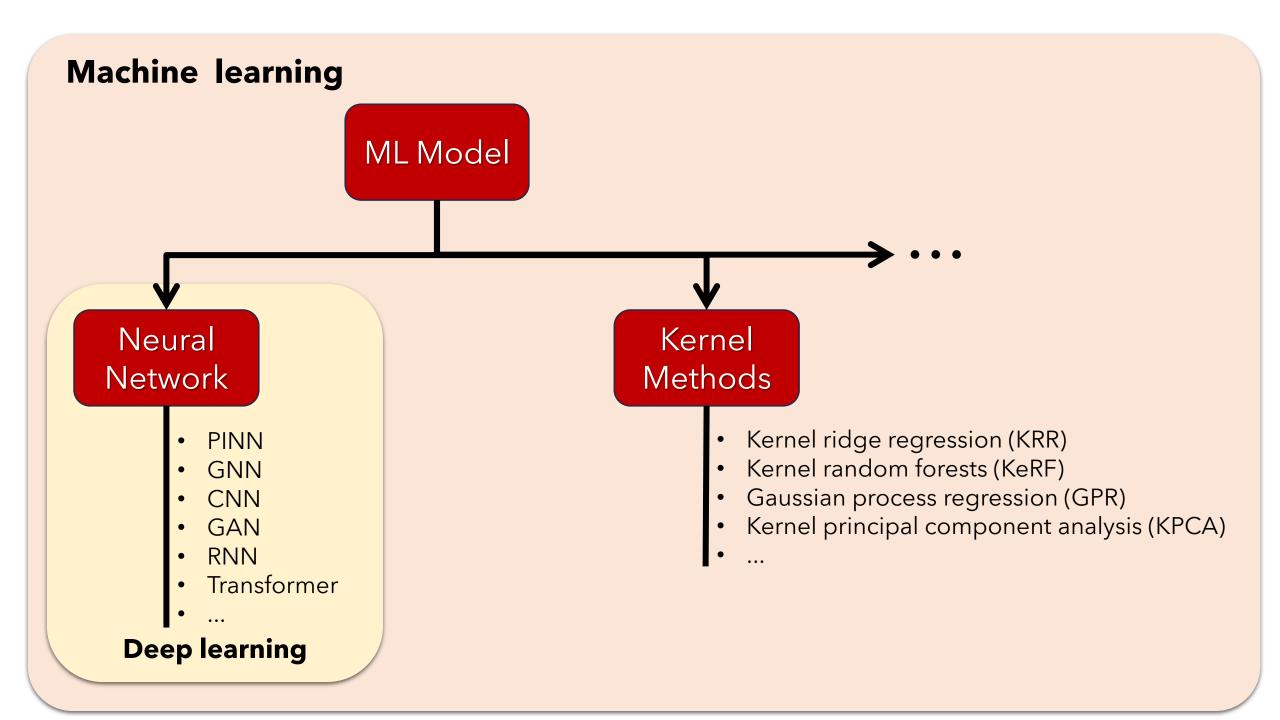
Generative adversarial networks (GAN)

Two NN – a generator and a discriminator – compete to create realistic-looking outputs <u>tinyurl.com/ganetintro</u>

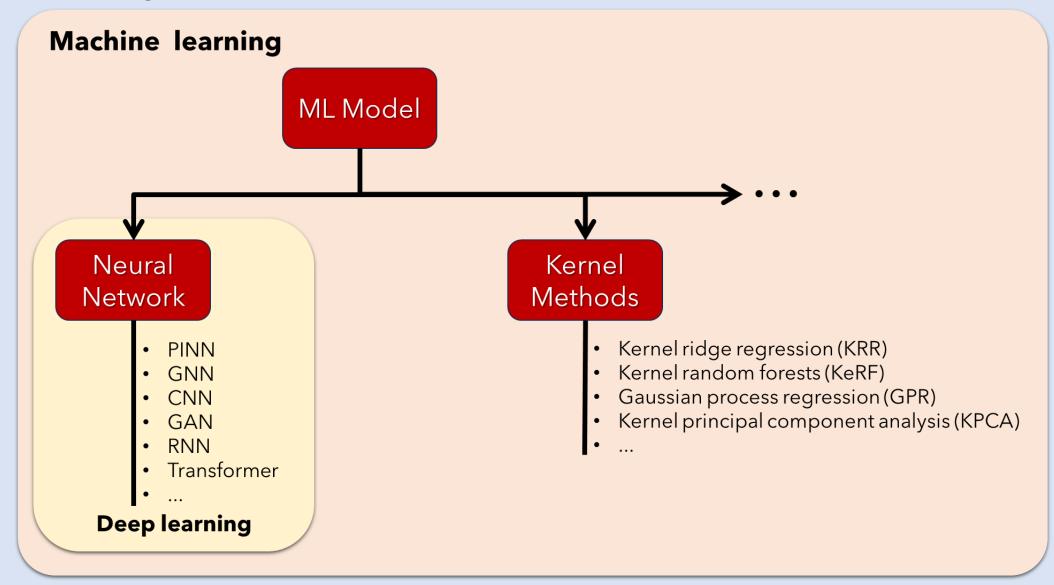
Transformer neural networks

NN architecture for encoding words, word position, and word's contextual relation with others in the sentence (self-attention).

https://youtu.be/zxQyTK8quyY

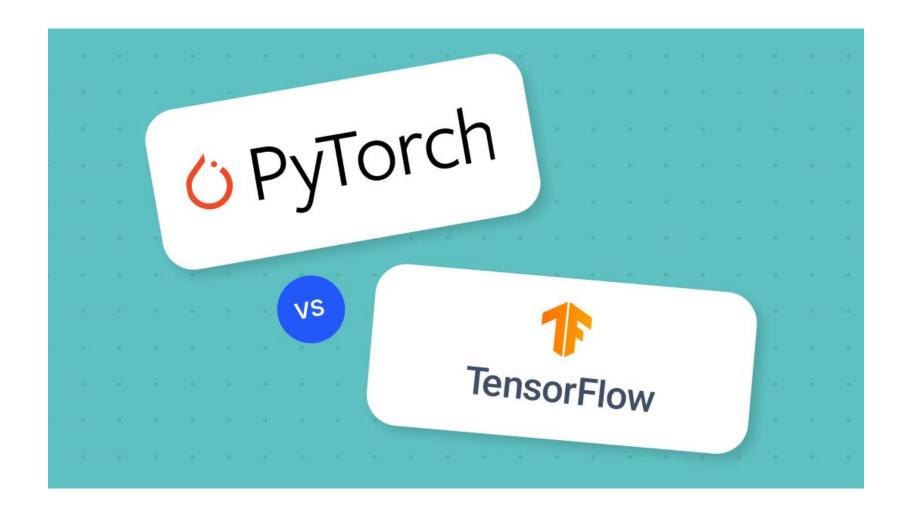


Artificial inteligence

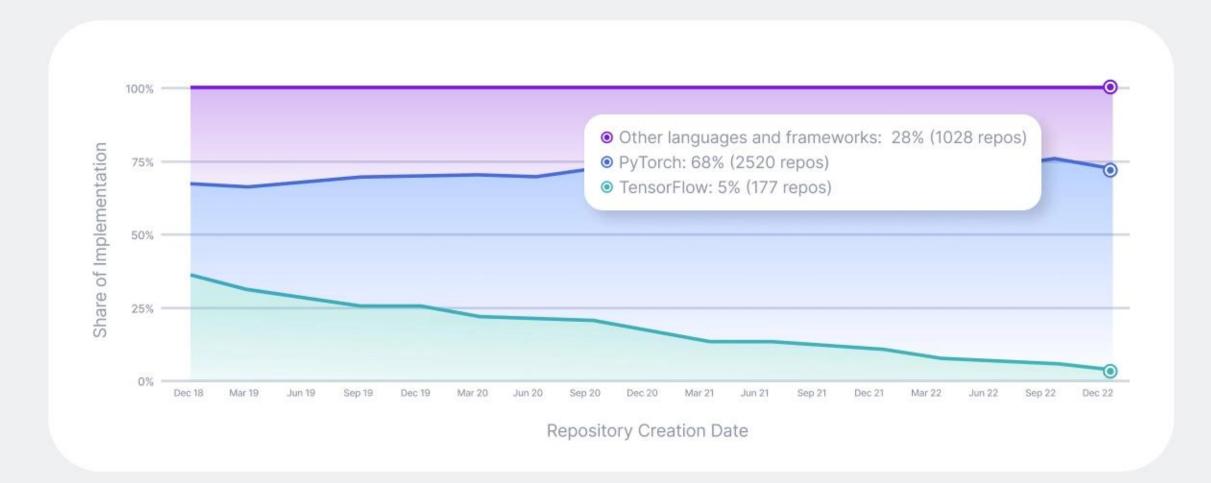


Machine learning in practice

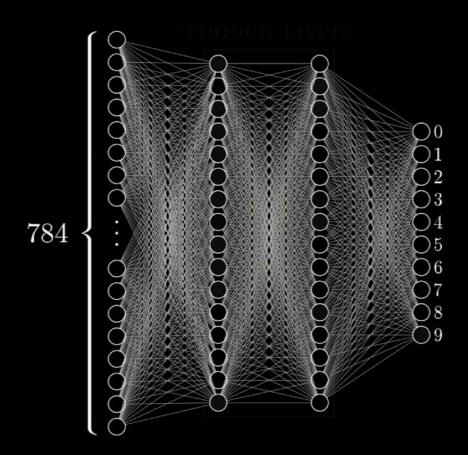
Machine learning development network



- Other languages and frameworks
- PyTorch
- TensorFlow



```
import torch
import torch.nn as nn
class SimpleNeuralNetwork(nn.Module):
   def init (self):
     super(SimpleNeuralNetwork, self).__init__()
     self.layer1 = nn.Linear(784, 16)
     self.layer2 = nn.Linear(16, 16)
     self.output layer = nn.Linear(16, 10)
  def forward(self, x):
     x = torch.sigmoid(self.layer1(x))
     x = torch.sigmoid(self.layer2(x))
     x = self.output_layer(x)
      return x
# Instantiate the model
model = SimpleNeuralNetwork()
```



tinyurl.com/pytorchlearn

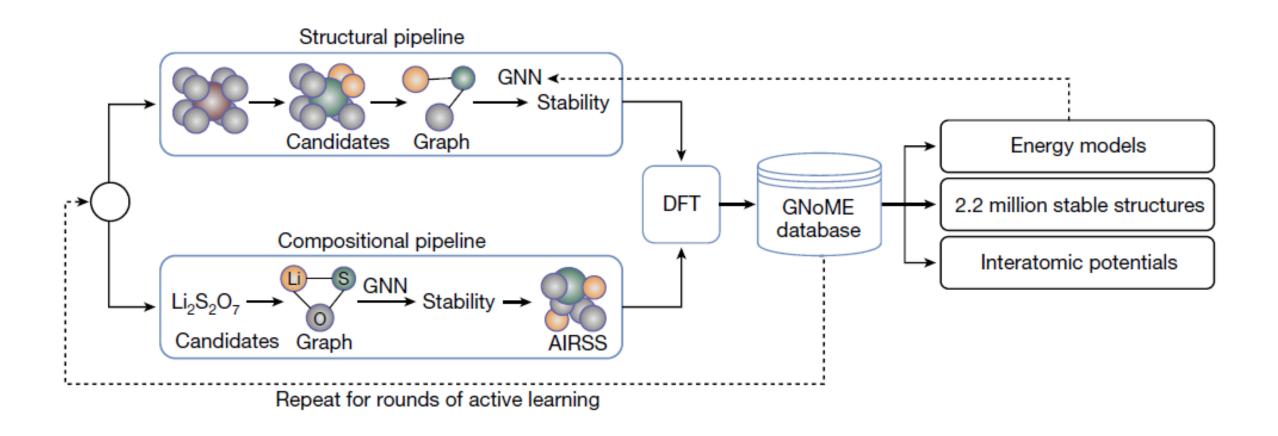
ML for Modeling Materials

Al for theoretical chemistry has been used to

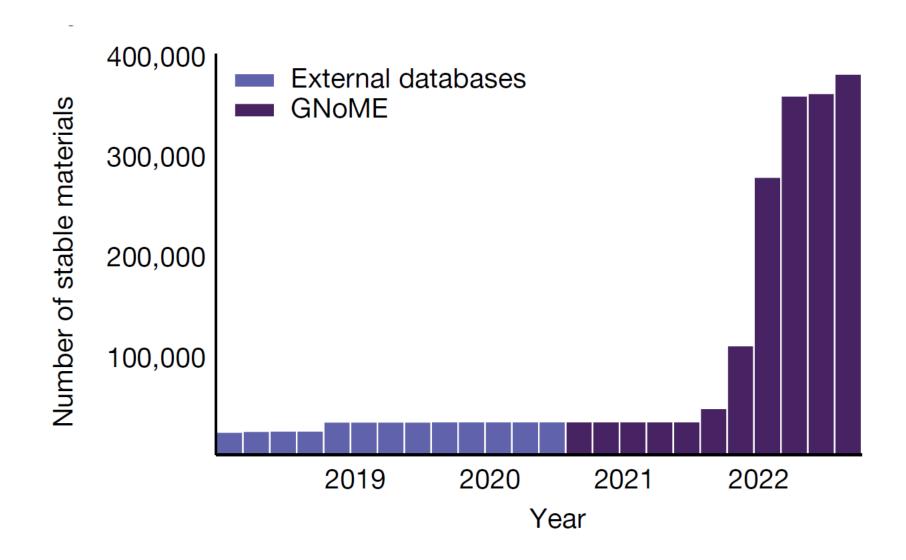
- Search the chemical space of compounds
- Perform dimensionality reduction, clustering, and pattern recognition
- Improve or accelerate quantum chemical methods
- Predict properties as a surrogate approach

Search the chemical space of compounds

GNN-based discovery of new materials



GNN-based discovery added 381,000 new stable materials to the database



Perform dimensionality reduction, clustering, and pattern recognition

Hierarchical protocol for the automatic analysis of the ring deformation in surface hopping

Based on

- dimensionality reduction (PCA)
- clustering (DBSCAN + agglomerative clustering)

Channel	Important motion
Cluster A1B1 10.2% 2 3 4(5)	C1-puckering C10-puckering C=O out-of-plane motion[–] ^a
Cluster A1B2C1 56.2% 2 3 10 4(5)	C1-puckering NH_2 out-of-plane motion $[-]^a$
12.1% 6 2 3 10 4(5)	C1-puckering
Cluster A1B2C3 6.3% 6.3% 6.3% 1 2 3 4(5)	C1-puckering NH_2 out-of-plane motion $[+]^a$ C1-N6 bond stretching
7.7% 6 2 9 10 4(5)	C1-puckering C=O out-of-plane motion[+] ^a
Cluster A2 7.5% 2 3 5 1 6	C—O stretching motion

Improve or accelerate quantum chemical methods

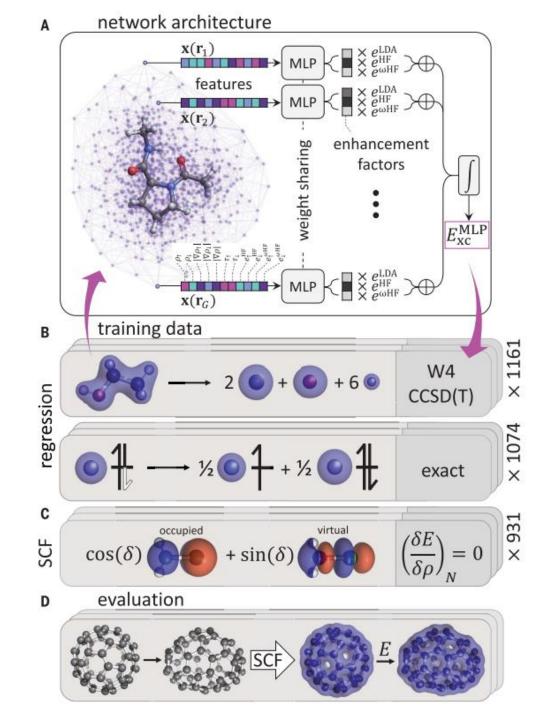
Density functional from an NN

Input features:

- charge density r,
- norm of charge density
- electron kinetic energy density
- local HF exchange energy densities

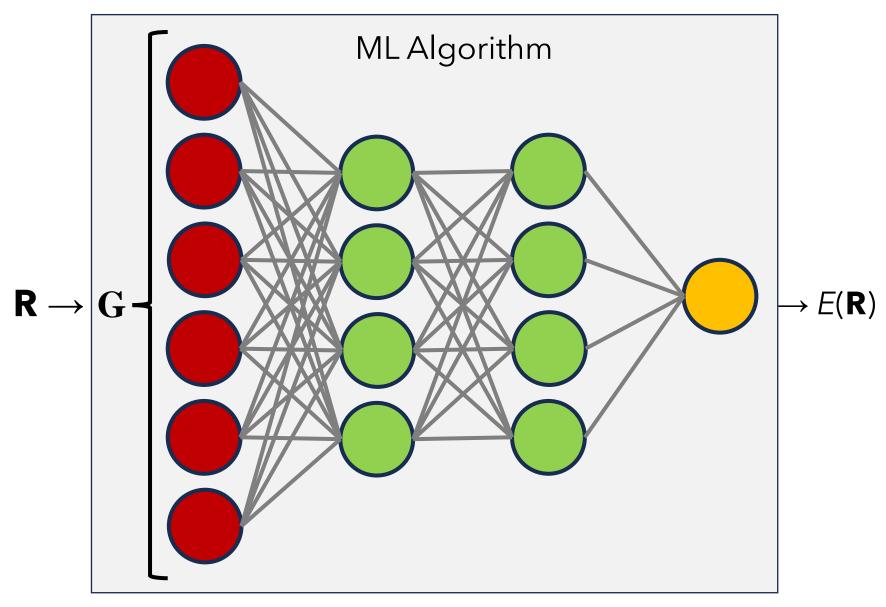
"The resulting functional, DM21 (DeepMind 21), correctly describes typical examples of artificial charge delocalization and strong correlation and performs better than traditional functionals on thorough benchmarks for main-group atoms and molecules. DM21 accurately models complex systems such as hydrogen chains, charged DNA base pairs, and diradical transition states."

Kirkpatrick *et al. Science* **2021**, *374*, 1385 Quanta magazine: <u>tinyurl.com/qmdm21</u>

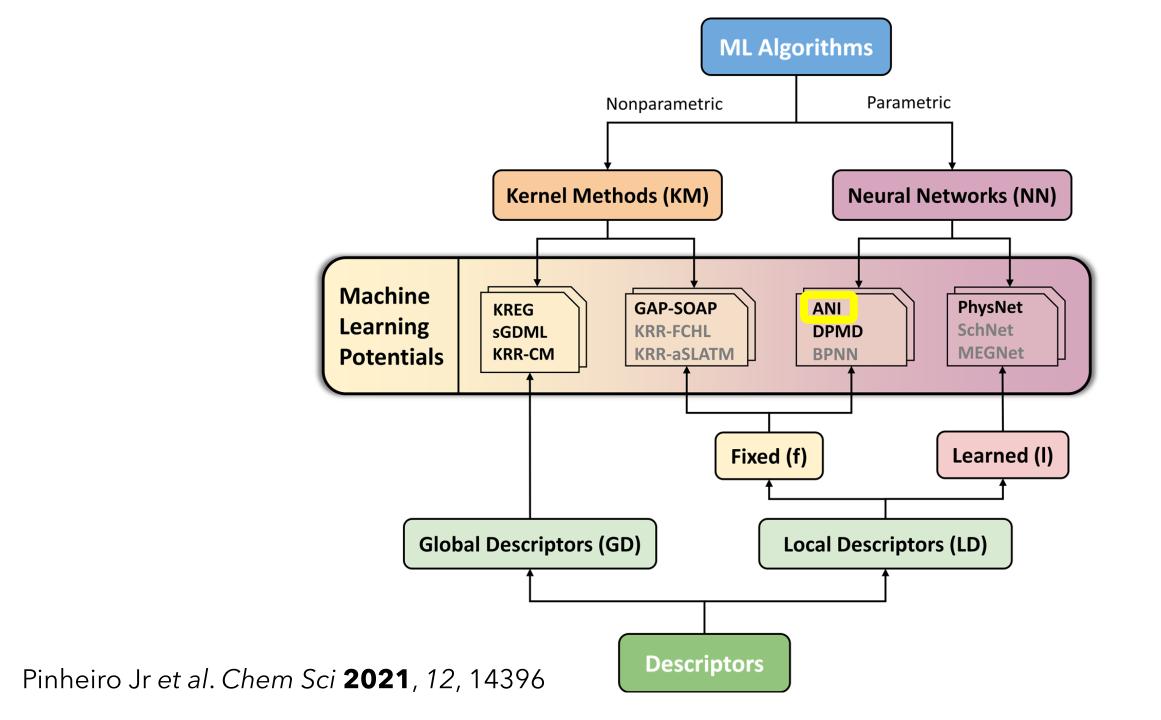


Predict properties as a surrogate approach: ML Potentials

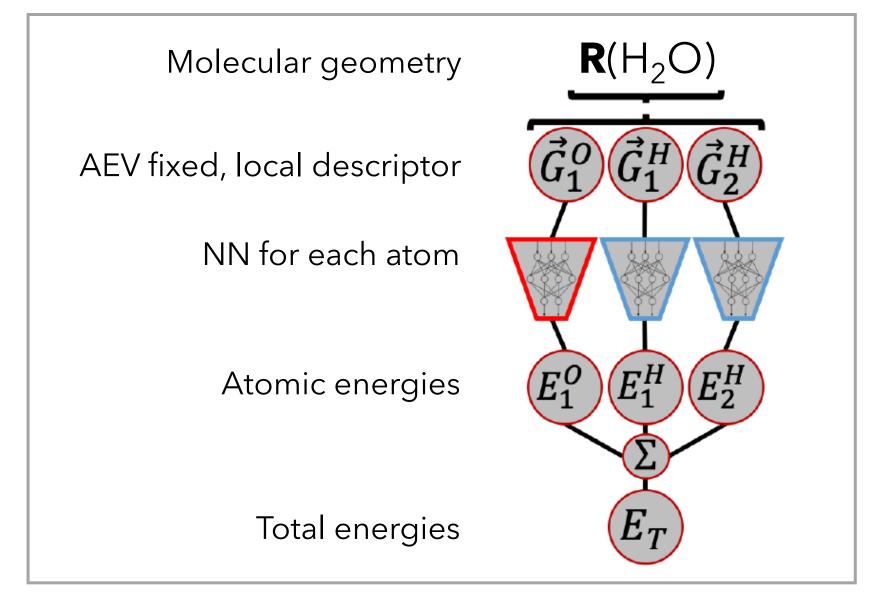
$$\mathbf{R} \to \left(T_{elec}(\mathbf{r}) + V(\mathbf{r}, \mathbf{R}) \right) \varphi(\mathbf{r}; \mathbf{R}) = \underline{E}(\mathbf{R}) \varphi(\mathbf{r}; \mathbf{R}) \longrightarrow E(\mathbf{R})$$



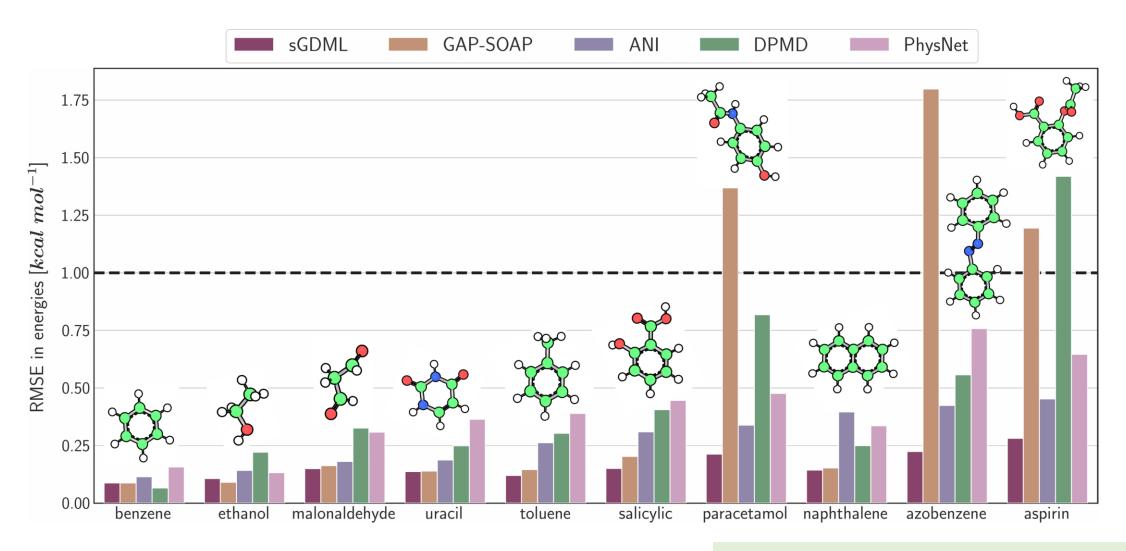
Descriptor



Example: ANI ML Potential

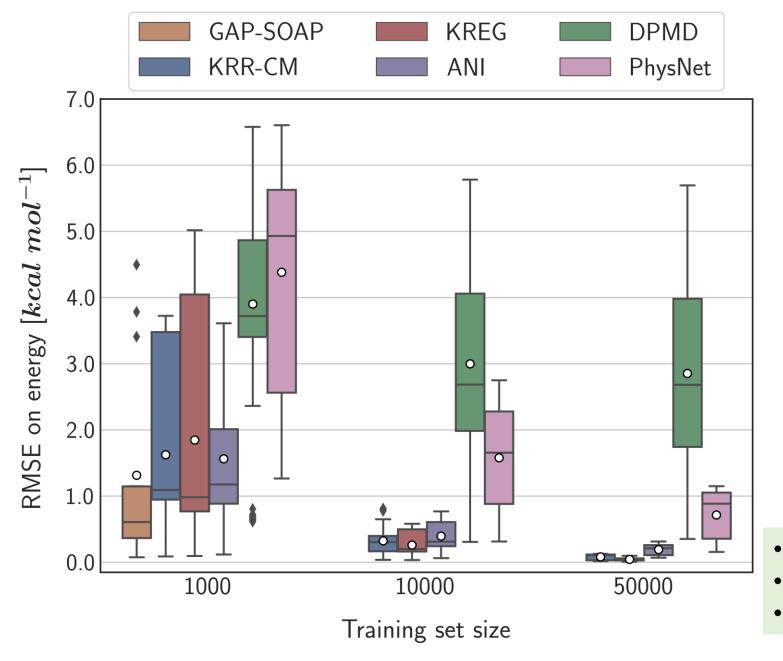


Gao et al. J Chem Inf Model **2020**, 60, 3408



- MD17 Database
- Energy + Force
- $N_{train} = 1 \text{k}; N_{model} = 20; N_{test} = 20 \text{k}$

Pinheiro Jr et al. Chem Sci **2021**, 12, 14396

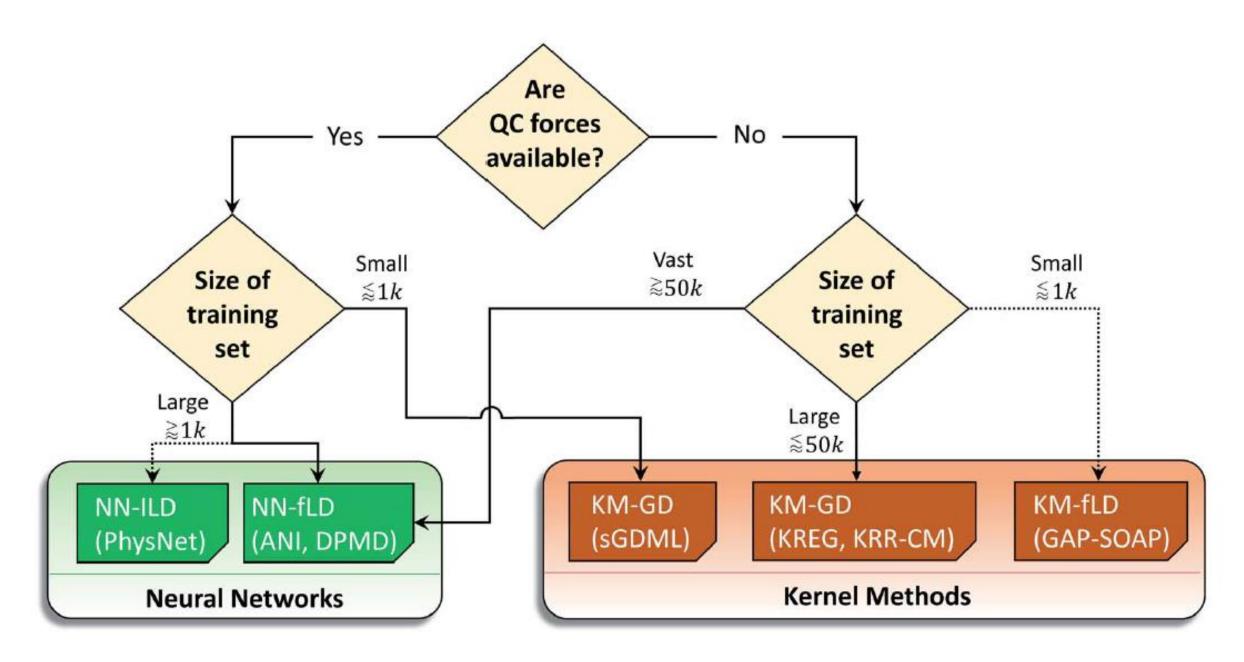


MD17 Database

Energy only

 $N_{\text{test}} = 20k$

Pinheiro Jr et al. Chem Sci **2021**, 12, 14396



Pinheiro Jr et al. Chem Sci **2021**, 12, 14396

To know more:

3Blue1Brown Course on NN

www.3blue1brown.com/topics/neural-networks

Kernel Methods

• Pinheiro Jr; Dral, In Quantum chemistry in the age of machine learning, 2023; pp 205

ML Potentials

Pinheiro Jr et al. Chem Sci 2021, 12, 14396

Deep Learning Applied to Computational Mechanics

• Vu-Quoc; Humer. Comput Model Eng Sci 2023, 137, 1069

amubox.univ-amu.fr/s/xXAiMZrDPb9RMRX (Ask me for the password)

many

Quantum Statistical Mechanics

Classical Statistical Mechanics

Computational Modeling of Nanosystems

Scientific skills

- Quantum chemistry
- Molecular dynamics
- Physical chemistry

Math skills

- Linear algebra
- Statistics
- Machine learning

Operational skills

- Modeling
- Programming
- Data processing

few

Quantum Mechanics Classical Mechanics

small

large

General relativity
Dark matter/energy

Big thanks to

Vijay Chilkuri

Rafael Mattos
Josene Toldo
Saikat Mukherjee
Matheus O. Bispo
Baptiste Demoulin

Tina Greco