L11 – Statistical Mechanics 3

Statistical errors and spectrum simulations

Statistical errors in molecular dynamics

Consider the following example. We ran 100 trajectories starting from an isomer C and find:

Channel	Proportion of trajectories (%)
No isomerization	5
Isomer A	52
Isomer B	43

The **mean value** of the isomerization time into isomer B was 150 fs with a **standard deviation** of also 150 fs.

What is the margin of error (precision) for these numbers?

The **mean value** of the isomerization time into isomer B was 150 fs with a **standard deviation** of 150 fs.

Suppose you repeat the simulation 100 times. Each time, the mean value will be a bit different.

Margin of error for a population mean

If μ_a is the mean value of the repetitions' means, the mean value of each repetition will be within the $\mu_a - \varepsilon_a$ and $\mu_a + \varepsilon_a$ in x% of times for

$$\mathcal{E}_a = z \left(x\% \right) \frac{\sigma}{\sqrt{N_a}}$$

- σ is the population standard deviation for process a
- N_a is the population size of the process a
- *z*(95%) = 1.96 (confidence interval)

For the 43 trajectories returning to the ground state, the **mean value** of the hopping time was 150 fs with a **standard deviation** of 150 fs

For 95% confidence, the margin of error of the mean $A \rightarrow B$ isomerization time is

$$\varepsilon_{C \to B} = 1.96 \frac{150}{\sqrt{43}} = 45$$

Isomerization B time:

$$\tau_{C \to B} = 150 \pm 45 \text{ fs}$$

www.youtube.com/watch?v=zeJD6dqJ5lo

N = 100 trajectories

Channel	Proportion of trajectories (%)
No isomerization	5
Isomer A	52
Isomer B	43

Margin of error for a population proportion

$$\varepsilon_p = z(x\%)\sqrt{\frac{p(1-p)}{N}}$$

- *p* is the population proportion
- *N* is the population size
- *z*(95%) = 1.96 (confidence interval)

N = 100 trajectories

Channel	Proportion of trajectories (%)
No isomerization	5
Isomer A	52
Isomer B	43

For a confidence of 95% (Z = 1.96) the margin of error for "no isomerization" proportion is

$$\varepsilon_p = 1.96 \sqrt{\frac{p(1-p)}{N}} = 1.96 \sqrt{\frac{0.05(1-0.05)}{100}} = 4\%$$

No isomerization is 5 ± 4 % for 95% confidence.

This means if we repeat the simulations 100 times, we are confident that the number of "no isomerization" should be between 1% and 9% in 95 of the simulations.

Channel	Proportion of trajectories (%)	Margin of error (%)
No isomerization	5	4
Isomer A	52	10
Isomer B	43	10

Which of the three channels is the most important?

Statistical errors in molecular dynamics: Bootstraping

The previous discussion assumed a normal distribution of populations.

Bootstrapping is an alternative to estimating statistical uncertainty if you don't want to make such an assumption

Biostatistics for Dummies, <u>tinyurl.com/bstrapping</u>

Bootstrapping:

Suppose you have N results and want to determine the margin of error.

- 1. Compute the mean of the *N* results.
- 2. From these N results, random pick *N* values. You can pick the same value more than once.
- 3. Compute the mean of this new set of this resampling of *N* values.
- 4. Repeat the resampling many times, computing the mean for each one.
- 5. Compute the standard deviation and confidence interval for the mean values.

en.wikipedia.org/wiki/Bootstrapping (statistics)

	Simulation			_
Traj 1	92			
Traj 2	101			
Traj 3	98			
Traj 4	88			
Traj 5	94			
Traj 6	102			
Traj 7	109			
Traj 8	120			
Traj 9	89			
Traj 10	61			
Traj 11	114			
Traj 12	93			Rogult
Traj 13	138			
Traj 14	89			 Gaussia
Traj 15	108			101 ± 7
Traj 16	113			,
Traj 17	115			
Traj 18	98			
Traj 19	105			
Traj 20	90			
Mean	101			
Std dev	16			
95%SE	7			

	Simulation	Resamp 1				
Traj 1	92	89				
Traj 2	101	108				
Traj 3	98	138				
Traj 4	88	114				
Traj 5	94	98				
Traj 6	102	113				
Traj 7	109	108				
Traj 8	120	94				
Traj 9	89	61				
Traj 10	61	138				
Traj 11	114	108				
Traj 12	93	90			Rosult	
Traj 13	138	109			Result.	•
Traj 14	89	114			 Gauss 	siar
Traj 15	108	113			101 ±	7
Traj 16	113	93				-
Traj 17	115	93				
Traj 18	98	89				
Traj 19	105	120				
Traj 20	90	138				
Mean	101	106				
Std dev	16					
95%SE	7					

	Simulation	Resamp 1	Resamp 2		
Traj 1	92	89	109		
Traj 2	101	108	90		
Traj 3	98	138	109		
Traj 4	88	114	115		
Traj 5	94	98	98		
Traj 6	102	113	108		
Traj 7	109	108	108		
Traj 8	120	94	89		
Traj 9	89	61	98		
Traj 10	61	138	138		
Traj 11	114	108	92		
Traj 12	93	90	108		Rosult
Traj 13	138	109	92		
Traj 14	89	114	93		 Gaussian
Traj 15	108	113	89		101 ± 7
Traj 16	113	93	105		
Traj 17	115	93	113		
Traj 18	98	89	98		
Traj 19	105	120	88		
Traj 20	90	138	109		
Mean	101	106	102		
Std dev	16				
95%SE	7				

	Simulation	Resamp 1	Resamp 2	•••	Resamp 9998	Resamp 9999	Resamp 100	000	
Traj 1	92	89	109		89	109	92		
Traj 2	101	108	90		61	108	102		
Traj 3	98	138	109		61	98	115		
Traj 4	88	114	115		113	115	98		
Traj 5	94	98	98		114	93	94		
Traj 6	102	113	108		105	101	105		
Traj 7	109	108	108		94	114	92		
Traj 8	120	94	89		61	98	98		
Traj 9	89	61	98		89	98	113		
Traj 10	61	138	138		115	138	101		
Traj 11	114	108	92		120	98	98		
Traj 12	93	90	108		92	101	109	Rosult	
Traj 13	138	109	92		90	98	101		
Traj 14	89	114	93		89	109	88	 Gaussian 	
Traj 15	108	113	89		92	105	98	101 ± 7	
Traj 16	113	93	105		101	98	113	 Pootstrappi 	nc
Traj 17	115	93	113		92	93	90		nç
Traj 18	98	89	98		108	120	61	101 ± 6	
Traj 19	105	120	88		89	89	94		
Traj 20	90	138	109		113	109	93		
								95%SE	
Mean	101	106	102	•••	94	105	98	6	
Std dev	16								
95%SE	7								

def bootstrap_stats(data, num_samples=1000, confidence_level=0.95):
 boot samples = np.random.choice(data, size=(num samples, len(data)), replace=True)

```
# Calculate mean for each bootstrap sample
means = np.mean(boot samples, axis=1)
```

```
# Calculate standard deviation of the mean
std dev mean = np.std(means)
```

```
# Calculate 95% confidence intervals for mean
ci mean = np.percentile(means, [(1-confidence level)/2*100,(1+confidence level)/2*100])
```

```
# Calculate mean of the original data
original mean = np.mean(data)
```

```
# Print results
print("Original Mean:", original_mean)
print("Standard Deviation of Mean:", std_dev_mean)
print(f"95% ME of Bootstrapped Mean: {(ci mean[1]-ci mean[0])/2}")
```

Example usage: times = [61,88,89,89,90,92,93,94,98,98,101,102,105,108,109,113,114,115,120,138] result = bootstrap stats(times)

Monte Carlo Sampling of Errors

Suppose you want to compute Marcus rate for the reaction $A \rightarrow B$

$$W_{AB} = \frac{2\pi}{\hbar} |V_{12}|^2 \frac{1}{\sqrt{4\pi\lambda k_B T}} \exp\left(-\frac{\left(\lambda + \Delta E^0\right)^2}{4\lambda k_B T}\right)$$

- Adiabatic energy gap $\Delta E^0 = -0.5 \pm 0.1 \text{ eV}$
- Reorganization energy $\lambda = 2.0 \pm 0.1 \text{ eV}$
- Diabatic coupling $V_{12} = 0.05 \pm 0.01 \text{ eV}$
- Temperature $T = 300 \pm 1 \text{ K}$

The uncertainties are 95% CI

Suppose you want to compute Marcus rate for the reaction $A \rightarrow B$

$$W_{AB} = \frac{2\pi}{\hbar} |V_{12}|^2 \frac{1}{\sqrt{4\pi\lambda k_B T}} \exp\left(-\frac{\left(\lambda + \Delta E^0\right)^2}{4\lambda k_B T}\right)$$

- Boltzmann constant $k_{\rm B} = 8.617333262 \times 10^{-5} \, {\rm eV/K}$
- Reduced Planck constant $\hbar = 6.582119569 \times 10^{-16} \text{ eV.s}$

Naked results: Marcus rate = 223 ns⁻¹ Marcus lifetime = 4.5 ps

- Adiabatic energy gap $\Delta E^0 = -0.5 \pm 0.1 \text{ eV}$
- Reorganization energy $\lambda = 2.0 \pm 0.1 \text{ eV}$
- Diabatic coupling $V_{12} = 0.05 \pm 0.01 \text{ eV}$
- Temperature $T = 300 \pm 1 \text{ K}$

The uncertainties are 95% CI

What about the uncertainties?

```
# Marcus rate
def marcus rate (DE, RE, V, TEMP):
  W = 2*math.pi/hbar*
      1/math.sqrt(4*math.pi*RE*kB*TEMP)*
      math.exp(-(RE+DE)**2/(4*RE*kB*TEMP))
  return W
Ntot = 100000
                                                   # Number of points
     = 1.96
                                                   # 95% CI
Ζ
all values = []
for i in range (1, Ntot+1):
                                                   # Loop over random values
       = np.random.normal(loc=DE0, scale=DDE0/Z)
  DE
       = np.random.normal(loc=lamb, scale=Dlamb/Z)
  RE
       = np.random.normal(loc=V12, scale=DV12/Z)
  V
  TEMP = np.random.normal(loc=T, scale=DT/Z)
```

time = 1/marcus_rate(DE,RE,V,TEMP)

Lifetime

store

all_values.append(time)

Distribution of 10,000 random samples Histogram of Mean Lifetimes

Practical use of Monte Carlo integration: Spectrum simulation

Reaction coordinate

A simple expression for the photoabsorption cross-section σ from the ground state (0) to state *n* is (in atomic units)

$$\sigma(E) = \frac{2\pi^2}{c} \frac{1}{E} \int \left| \chi_0(\mathbf{R}) \right|^2 \Delta E_{0n}(\mathbf{R}) f_{0n}(\mathbf{R}) g\left(E - \Delta E_{0n}(\mathbf{R}), \sigma \right) d\mathbf{R}$$

- *E* : photon energy
- **R** : nuclear coordinates

 $\chi_0(\mathbf{R})$: nuclear wave function of the ground state $\Delta E_{0n}(\mathbf{R})$: potential energy gap $0 \rightarrow n$ $f_{0n}(\mathbf{R})$: oscillator strength $0 \rightarrow n$ $g(E - \Delta E, \sigma)$: Normalized Gaussian in *E*, centered in ΔE and standard deviation σ

Crespo-Otero; Barbatti. Theor Chem Acc **2012**, 131, 1237

A simple expression for the photoabsorption cross-section σ from the ground state (0) to state *n* is (in atomic units)

$$\sigma(E) = \frac{2\pi^2}{c} \frac{1}{E} \int \left| \chi_0(\mathbf{R}) \right|^2 \Delta E_{0n}(\mathbf{R}) f_{0n}(\mathbf{R}) g(E - \Delta E_{0n}(\mathbf{R}), \sigma) d\mathbf{R}$$

 σ has unity of area and it is given in $bohr^2$

We can convert it to extinction coefficient ε (in L.mol⁻¹.cm⁻¹) via

 $\varepsilon(E) = 7321.2134 \sigma(E)$

Crespo-Otero; Barbatti. Theor Chem Acc **2012**, 131, 1237

$$\sigma(E) = \frac{2\pi^2}{c} \frac{1}{E} \int \left| \chi_0(\mathbf{R}) \right|^2 \Delta E_{0n}(\mathbf{R}) f_{0n}(\mathbf{R}) g(E - \Delta E_{0n}(\mathbf{R}), \sigma) d\mathbf{R}$$

 $P_0(\mathbf{R})$ is the **probability density** of finding the molecule in the ground state with geometry **R**.

 $P_0(\mathbf{R})$.d**R** is the **probability** of finding the molecule in the ground state with geometry **R** within the volume d**R**.

$$\sigma(E) = \int P_0(\mathbf{R}) \left[\frac{2\pi^2}{c} \frac{1}{E} \Delta E_{0n}(\mathbf{R}) f_{0n}(\mathbf{R}) g(E - \Delta E_{0n}(\mathbf{R}), \sigma) \right] d\mathbf{R}$$

$$h(E, \mathbf{R})$$

$$\sigma(E) = \int P_0(\mathbf{R})h(E,\mathbf{R})d\mathbf{R}$$

We use Monte Carlo to integrate this expression in \mathbf{R} $\sigma(E) = \int P_0(\mathbf{R})h(E,\mathbf{R})d\mathbf{R}$

- 1. Sample N_p random geometries \mathbf{R}_i following the distribution $P_0(\mathbf{R})$
- 2. Compute $h(\mathbf{R}_i)$ for each geometry
- 3. Estimate the integral as

$$\sigma(E) \approx \frac{1}{N_P} \sum_{i=1}^{N_P} h(E, \mathbf{R}_i)$$

The photoabsorption cross section is

$$\sigma(E) = \frac{2\pi^2}{c} \frac{1}{N_p E} \sum_{i=1}^{N_p} \Delta E_{0n}(\mathbf{R}_i) f_{0n}(\mathbf{R}_i) g(E - \Delta E_{0n}(\mathbf{R}_i), \sigma)$$

where \mathbf{R}_i are nuclear geometries sampled from the probability density function $|\chi_0(\mathbf{R})|^2$.

- $\Delta E_{0n}(\mathbf{R}_i)$ and $f_{0n}(\mathbf{R}_i)$ are computed with quantum chemistry (TDDFT, for example)
- The distribution $|\chi_0(\mathbf{R})|^2$ can be taken from
 - ✓ a trajectory in the ground state
 - \checkmark or from a Wigner sampling of the harmonic oscillator

Braun et al. J Chem Phys **2022**, 157, 154305

 $N_p = 1000$ geometries

Case study: Non-Kasha fluorescence of pyrene

Nonadiabatic dynamics

Photoabsorption

Kasha rule

Fluorescence

Non-Kasha fluorescence

Baba et al. J Chem Phys **1971,** 55, 2433

Baba et al. J Chem Phys **1971,** 55, 2433

Baba et al. J Chem Phys **1971,** 55, 2433

Baba et al. J Chem Phys **1971,** 55, 2433

Static equilibrium

Dynamic equilibrium

If the peak is non-Kasha, which kind of non-Kasha?

LIGHT AND MOLECULES

Dynamics from two excitation windows

Simulating non-Kasha fluorescence

$$\Gamma_{TOT}(E) = \sum_{J} \Gamma_{J \to 0}(E) \rho_{1J}$$

$$\sum_{J}()$$
 Sum over electronic states J

$$\Gamma_{J\to 0}(E)$$
 Differential emission rate from S_J to S_0

 $\rho_{1J} \qquad \begin{array}{l} \text{Distribution of excited-state population } J \\ \text{(relative to S}_1\text{)} \end{array}$

$$\Gamma_{TOT}(E) = \sum_{J} \Gamma_{J \to 0}(E) \rho_{1J}$$

In atomic units:

$$\Gamma_{J\to 0}\left(\boldsymbol{E}\right) = \frac{2}{c^3 N_p^{(J)}} \sum_{l}^{N_p^{(J)}} \Delta E_{0J}^2 \left(\mathbf{R}_l^{(J)}\right) f_{0J}\left(\mathbf{R}_l^{(J)}\right)$$
$$\times \left[1 - H\left(E - E_a\right)\right]$$
$$\times g\left(E - \Delta E_{0J}\left(\mathbf{R}_l^{(J)}\right), \delta_J\right)$$

 E_a - absorption energy H - Heaviside step function

$$\Gamma_{TOT}(E) = \sum_{J} \Gamma_{J \to 0}(E) \rho_{1J}$$

 $\rho_{1J} = \frac{N_p^{(J)}}{N_T}
 \quad Number of points in state J during dynamics$

Pyrene fluorescence: 100 ns – Dynamics is unaffordable

Ergodic protocol:

- Simulate many short surface hopping trajectories
- Discard initial relaxation
- Build the ensemble with the relaxed part of all trajectories
- Suppose this total cumulative time is representative of phase space occupation

	Cumulative time
High-energy band	21 ps
Low-energy band	23 ps

Braun et al. J Chem Phys **2022**, 157, 154305

Static equilibrium

Dynamic equilibrium

S₂ occupation during dynamics:

- High-energy 3.4%
- Low-energy 1.6%

To know more:

Margins of error

- <u>tinyurl.com/kahnstat</u>
- <u>tinyurl.com/blognormal</u>

To truly understand Gaussian errors: central limit theorem

• <a>www.youtube.com/watch?v=zeJD6dqJ5lo

Statistical errors in MD

• Schiferl; Wallace. J Chem Phys 1985, 83, 5203

The most important statistical ideas in the last 50 years

• Gelman; Vehtari. J Am Stat Assoc 2021, 116, 2087

Spectrum simulations

• Eric J Heller, *The semiclassical way*, **2018**. Ch 17

Papers available for download at: <u>amubox.univ-amu.fr/s/xXAiMZrDPb9RMRX</u> (Ask me for the password)