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• Quantum Chemistry / Electronic Structure Theory: 
Solve for motions of electrons in molecules; provide static properties of 
individual molecules and potential energy surfaces

• Dynamics: 
Solve for motions of molecules on a quantum/classical potential energy 
surface; provides reaction rates

• Statistical Mechanics: 
Solve for bulk properties from properties of individual molecules. 

Theoretical Chemistry



Robert S. Mulliken
1966 Noble Prize in Chemistry

"… the era of computing chemists, when 

hundreds if not thousands of chemists will 

go to the computing machine instead of the 

laboratory … is already at hand.  There is 

only one obstacle, namely, that someone 

must pay for the computing time.”



John Pople & Walter Kohn
1998 Noble Prize in Chemistry

John Pople: for development of 
computational methods in 
quantum chemistry

Walter Kohn: for development of 
the density functional theory



John Pople & Walter Kohn
1998 Noble Prize in Chemistry

Walter Kohn: for development of 
the density functional theory

“… The fact that I got the Noble Prize in 

Chemistry reflects the fact that, at a certain 

theoretical level, chemistry and physics 

are very close to each other.”



• Equilibrium Geometries (microwave spectra)

• Vibrational Frequencies (IR spectra)

• Excited States (UV/VIS Spectra)

• Ionization Potentials (Photoelectron and X-ray Spectra)

• Electron affinities

• Magnetic Shielding Tensors (NMR Spectra)

• Dipole moment, Polarizibility, … 

• Reaction Pathways and barrier heights

• Reaction rate (with statistical or dynamical studies)

• Thermodynamic properties (statistical mechanics)

Electronic Structure Theory



The Schrödinger Equation for Molecules

!𝐻Ψ = 𝐸Ψ
Ψ = Ψ 𝒓!, 𝑹!, 𝒓", 𝑹", ⋯ , 𝒓#, 𝑹#
!𝐻 = *𝑇$ 𝑹 + *𝑇% 𝒓 + 𝑉%$ 𝒓, 𝑹 + 𝑉$$ 𝑹 + 𝑉%%(𝒓)

0𝐻%& = *𝑇% 𝒓 + 𝑉%$ 𝒓; 𝑹 + 𝑉$$ 𝑹 + 𝑉%%(𝒓)

!𝐻%&(𝒓; 𝑹)Ψ(𝐫; 𝐑) = 𝐸%&Ψ(𝐫; 𝐑)



"… The underlying physical laws necessary for the mathematical theory 

of a large part of physics and the whole of chemistry are thus 

completely known, and the difficulty is only that the exact application 

of these laws leads to equations much too complicated to be soluble.”
 

--- P.A.M. Dirac, Proc. Roy. Soc. (London) 123, 714, (1929)

Quantum Chemistry approximately solves !𝐻!"(𝒓; 𝑹)Ψ(𝐫; 𝐑) = 𝐸!"Ψ(𝐫; 𝐑)

The Electronic Schrödinger Equation



Pople Diagram: Level of  Theory 

increasing Accuracy
increasing CPU Time



Electronic Structure Methods

Method Accuracy Max atoms
Semi-empirical Low ~5000
Hartree-Fock Medium ~500
(Standard) DFT Medium-High ~500
MP2 High ~100
CISD High ~40
CCSD, CCSD(T) Very High ~30
Multireference CI, CC Ultra High ~15

David Sherrill, YouTube video on Intro to Electronic Structure Theory: 
https://www.youtube.com/watch?v=srL6i7zwzu4  

https://www.youtube.com/watch?v=srL6i7zwzu4


Density Functional Theory

• Use the electron density (3 dimensions) as the fundamental quantity instead of 

complicated many-electron wavefunctions (3N dimensions).

• Introducing “Functional” (function of a function) as the relationship of the energy to the 

density, E[ρ(x,y,z)]. 

• Employing the variational principle minimizes the energy with respect to the density. 

• The true functional is unknown uses various approximations. 

• Efficient and low computational cost. 

Szabo and Ostlund, modern Quantum Chemistry, Dover Publications, NY 1996.



Density Functional Theory

• First Hohenberg-Kohn Theorem: The ground state properties of a many-electron system 

depend only on the electron density ρ(x,y,z). 

• Second Hohenberg-Kohn Theorem: The correct ground state density for a system is the 

one that minimizes the total energy through the functional E[ρ(x,y,z)].

• Coulomb interaction for a given electron density interacting with the nuclei and 

interaction between the electron densities with itself (J). 

• Exchange terms (K) account for electron antisymmetry and electron correlation effects.

• The kinetic energy of electron density is computed by assuming that the density 

corresponds to a wavefunction consisting of a Slater determinant (same as Hartree-Fock 

Theory) è Kohn-Sham DFT.



Density Functional Theory: Exchange Correlation Functionals

• Local density approximation (LDA): Functional depends only on the local density at a 

given point; S-VWN

• Gradient-corrected approximation (GGA): Functional depends on the local density and its 

gradient; PBE, LYP correlation functionals, B88 exchange functional

• Meta-GGA: Functional depends on density, its gradient and its second derivative; M06-L.

• Hybrid DF: Mixes in Hartree-Fock exchange; B3LYP (hybrid GGA), M05-2X and M06-

2X (hybrid meta-GGA). 

• Double-Hybrid DF: Hybrid DFT also mixes in some MP2 correlation, B2-PLYP.



Time-Dependent Density Functional Theory

• Linear Response-TDDFT calculates excitation energies in the response of the ground state 

density to a time-varying applied electric field. 

• Runge-Gross-Kohn Theorem: The external potential is time-dependent (static ionic 

potential + external perturbation via electromagnetic field).

E. Runge and E. K. U. Gross, Phys. Rev. Lett. 52, 997 (1984).

Fundamentals of Time-Dependent Density Functional  Theory, Lecture Notes in Physics 837,  M. A. L. 
Marques, N. Maitra, F. Nogueira, E. K. U. Gross, A. Rubio (eds.), Springer (2012). 

M. E. Casida, Time-Dependent Density Functional Response Theory for Molecules, Singapore, World 
Scientific (1995).



ORCA Quantum Chemistry Package – Prof. Frank Neese, MPI Mulheim
https://www.faccts.de/orca/

https://www.faccts.de/orca/


ORCA Quantum Chemistry Package – Prof. Frank Neese, MPI Mulheim
https://sites.google.com/site/orcainputlibrary/setting-up-orca

https://sites.google.com/site/orcainputlibrary/setting-up-orca


Geometry Optimization
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Let’s do Quantum Chemistry



Windows User: MobaXterm

Mac User: Terminal
Go to “Launchpad” 
  à look for “Terminal” 







Prepare and Run Input

• starting geometry

• level of theory (method and basis sets)

• convergence criteria

• run: 
 orca opt.inp > opt.out & 

Geometry Optimization

Revision: Basis Sets
Lecture2 – Quantum Mechanics 2: Quantum Chemistry



• Convergence Criteria
 NORMALOPT
 TIGHTOPT  Geometry
 VERYTIGHTOPT

 NORMALSCF
 TIGHTSCF  SCF
 VERYTIGHTSCF

• RI Approximations (need auxiliary basis sets)

 NORI  ! no approximation
 RIJONX  ! RI-J for the Coulomb integrals only; no approximations applied to HF exchange
 RIJK  ! RI for both Coulomb integrals and HF exchange integrals
 RIJCOSX ! RI-J for Coulumb integrals and COSX numerical integration for HF exchange

 

Geometry Optimization: Few Specifics



Analysis

• Look for success

• optimized geometry

• energy minimization

• orbitals
 orca_2mkl opt –molden 

Geometry Optimization



Revision: Lecture6 
Classical Mechanics 2: Molecular Normal Modes



Workflow

• start with optimized geometry 

• level of theory (same as optimization)

• run: 
 orca freq.inp > freq.out &

• identify normal mode vibrations

 orca_pltvib freq.hess all vibrations

Vibrational Frequency



Frequency calculation with not optimized geometry

Vibrational Frequency

imaginary frequency



Workflow

• starting geometry

• level of theory (ground state & electronic excited states)

• run:
 orca energy.inp > energy.out & 

• identify the electronic excited states

 orca_2mkl energy –molden 

• see the oscillator strengths

Single-Point excitation Energies



Ø Ground-State Optimization 
 confirmed by frequency calculation

Ø Excited-States Optimization 
 confirmed by frequency calculation

Ø Conical Intersection search between excited states 

Reaction Pathways



S0 min - Planar S1 min - Planar



S1/S2 CI - Planar S3/S2 CI - Bent



S0 min S1 min 
(𝒏𝝅⋆)

S2 min S3 min
(𝝅𝝅⋆)

S3/S2 CI S2/S1 CI

C-N (ang) 1.33 1.34 1.37 1.36 1.33
C-C (ang) 1.4 1.51 1.43 1.43 1.44
C-H (ang) 1.1 1.09 1.1 1.1 1.09
C-N-C (°) 116.4 127.5 110.4 109.6 123.2
C-C-N (°) 121.8 116.2 124.8 124.4 118.4
H-C-C (°) 120.7 120.9 118.3 118.4 120.0
N-C-C-N (°) 0 0 0 13.8 0

H-C-N-C (°) 0 0 0 165.1 0
Planar Planar Planar Bent Planar

Geometry Parameters



Reaction Pathways

Special Note:
All energies are referenced to the 
ground state equilibrium energy. 



Implicit Solvent Models

Ø Conductor-like Polarizable Continuum Model (CPCM)
 the bulk solvent is treated as a conductor-like polarizable continuum and the main 
parameters to define are the refractive index and the dielectric constant of the medium

Ø Universal Solvation Model (SMD)
 modification on the CPCM scheme. It uses the full solute electron density to compute 
the cavity-dispersion contribution instead of the area only. 

Ø COSMO

Solvent Name Dielectric constant Refractive index
Water 80.4 1.33
Hexane 1.89 1.375

Revision: Lecture7 
Classical Mechanics 3: Continuum models



Implicit Solvent Models



Appendix



Optimization algorithm

• Gradient descent or Steepest Descent:
A first-order iterative optimization algorithm for finding a local minimum of a differentiable function. The 
idea is to take repeated steps in the opposite direction of the gradient (or approximate gradient) of the 
function at the current point.

• Newton-Raphson:
It is an iterative method for finding the roots of a differentiable function F, which are solutions to 
the equation F(x) = 0. As such, Newton's method can be applied to the derivative f′ of a twice-differentiable 
function f to find the roots of the derivative (solutions to f ′(x) = 0), also known as the critical points of f. 
These solutions may be minima, maxima, or saddle points. This is relevant in optimization, which aims to 
find (global) minima of the function f.

BFGS:
The algorithm is an iterative method for solving unconstrained nonlinear optimization problems. BFGS 
determines the descent direction by preconditioning the gradient with curvature information. It does so by 
gradually improving an approximation to the Hessian matrix of the loss function, obtained only from 
gradient evaluations (or approximate gradient evaluations) via a generalized secant method.



Conical Intersection Search


