L9 - Statistical Mechanics 1

Boltzman picture, Gibbs ensembles, and thermostats
"Ludwig Boltzmann, who spent much of his life studying statistical mechanics, died in 1906, by his own hand. Paul Ehrenfest, carrying on the work, died similarly in 1933. Now it is our turn to study statistical mechanics.

Perhaps it will be wise to approach the subject cautiously"
David L. Goodstein - States of Matter, 2014

The Boltzmann picture

Macroscopic state: P

Microscopic state: $\mathbf{x}=\left(\mathbf{r}_{1}, \mathbf{p}_{1}, \mathbf{r}_{2}, \mathbf{p}_{2}, \ldots, \mathbf{r}_{N}, \mathbf{p}_{N}\right)$

A microstate corresponds to a single macrostate $\mathbf{x}_{1}=\left(\mathbf{r}_{11}, \mathbf{p}_{11}, \mathbf{r}_{12}, \mathbf{p}_{12}, \ldots, \mathbf{r}_{1 \mathrm{~N}}, \mathbf{p}_{1 \mathrm{~N}}\right) \rightarrow \mathrm{P}_{\mathrm{a}}$

Many microstates may yield the same macrostate $\mathbf{x}_{1} \rightarrow \mathrm{P}_{\mathrm{a}}$
$\mathbf{x}_{2} \rightarrow \mathrm{P}_{\mathrm{a}}$ $\mathbf{x}_{3} \rightarrow \mathrm{P}_{\mathrm{a}}$

Microstate space

Abstract

\mathbf{x}_{1} \mathbf{x}_{2}

Microstate space

$$
\mathbf{x}_{i}=\left(\mathbf{r}_{i 1}, \mathbf{p}_{i 1}, \mathbf{r}_{i 2}, \mathbf{p}_{i 2}, \ldots, \mathbf{r}_{\mathbb{N},}, \mathbf{p}_{i \mathbb{N}}\right)
$$

Microstate space
P_{a} P_{b}

Microstate space

$W\left(P_{a}\right)=12 \quad W\left(P_{b}\right)=28$

$W\left(P_{q}\right)=324$

Why does time flow in a single direction?

GAS

Vacuum
$\because \bullet \bullet$ $\bullet \bullet ひ い \bullet \bullet \bullet \bullet$

 $\bullet \bullet \bullet \bullet \bullet \bullet \subset く \bullet \bullet \bullet \bullet エ コ ミ \bullet い \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet$ $\bullet \bullet \bullet, \bullet \perp \bullet \bullet \bullet \bullet \bullet \bullet \bullet$
 $\bullet \bullet エ ン \bullet \bullet$ $\bullet \bullet \bullet \bullet \bullet$ • $\bullet \bullet \cdots \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet$ $\bullet \bullet \bullet, \bullet \bullet \wedge \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet$ $\bullet \bullet に \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet$ $\bullet \bullet \bullet$
 －$\bullet \cdot{ }^{\circ}$

Why does time flow in a single direction?

The equilibrium region of the microstate space is so large that it consists almost entirely of equilibrium microstates.

For this reason, a system that starts its time-evolution in a nonequilibrium state always evolves into the equilibrium region and stays there for a very long time.

A trajectory may take longer than the universe's lifetime to return to the initial non-equilibrium region.

D

Ergodic hypothesis

In the long run, the time a trajectory spends in a region of the microstate space is proportional to the area of the region.

$$
\frac{\operatorname{Time}(B)}{\operatorname{Time}(Y)}=\frac{\operatorname{Area}(B)}{\operatorname{Area}(Y)}
$$

1) If we random sample Li-stilbene according to the 1:99 probability ratio, we get 1% of cis and 99% of trans.
2) If we run a long molecular dynamics trajectory, Li-stilbene remains 1% of the time in cis and 99% of the time in trans.

Maxwell-Boltzmann statistics

If the system is in equilibrium, how many particles N_{i} have energy ε_{i} ?

$$
\begin{aligned}
& N=\Sigma_{j} N_{j} \\
& E=\Sigma_{j} N_{j} \varepsilon_{j}
\end{aligned}
$$

$$
\varepsilon_{4} N_{4}
$$

$$
\varepsilon_{3} \quad N_{3} \quad \text { Degeneracy }
$$

$$
\varepsilon_{2} N_{2} \equiv g_{2}
$$

$$
\varepsilon_{1} N_{1} \rightleftharpoons g_{1}
$$

The distribution of microstates is

$$
W=\prod_{i} \frac{g_{i}^{N_{i}}}{N_{i}!} \quad\left(\text { for } g_{i} \gg N_{i}\right)
$$

We have many W distributions

$$
W=\prod_{i} \frac{g_{i}^{N_{i}}}{N_{i}!}
$$

For example, for $N=3$ and 4 energy levels, each with $g_{i}=10$:

$$
\begin{aligned}
& W_{1}=\frac{10^{3}}{3!} \times \frac{10^{0}}{0!} \times \frac{10^{0}}{0!} \times \frac{10^{0}}{0!} \approx 167 \\
& W_{2}=\frac{10^{2}}{2!} \times \frac{10^{1}}{1!} \times \frac{10^{0}}{0!} \times \frac{10^{0}}{0!}=500 \\
& W_{3}=\frac{10^{2}}{2!} \times \frac{10^{0}}{0!} \times \frac{10^{1}}{1!} \times \frac{10^{0}}{0!}=500 \\
& \vdots \\
& W_{M}=\frac{10^{0}}{0!} \times \frac{10^{0}}{0!} \times \frac{10^{0}}{0!} \times \frac{10^{3}}{3!} \approx 167
\end{aligned}
$$

In equilibrium,
$S=k_{B} \ln W$ is the largest.
We should search for the N_{i} s that give the biggest In W.

To find the maximum, we must solve

$$
\frac{\partial}{\partial N_{j}}\left[\ln \left(\prod_{i} \frac{g_{i}^{N_{i}}}{N_{i}!}\right)\right]=0
$$

However, to ensure that the total number of particles and energy are constant, we must solve

$$
\frac{\partial}{\partial N_{j}}\left[\ln \left(\prod_{i} \frac{g_{i}^{N_{i}}}{N_{i}!}\right)+\alpha\left(N-\sum_{i} N_{i}\right)+\beta\left(E-\sum_{i} N_{i} \varepsilon_{i}\right)\right]=0
$$

We get the Maxwell-Boltzmann distribution

$$
N_{j}=g_{j} \exp \left(\frac{-\left(\varepsilon_{j}-\mu\right)}{k_{B} T}\right)
$$

See the derivation in the Appendix to this presentation.

Two extremely important results are

$$
\frac{N_{j}}{N_{k}}=\frac{g_{j}}{g_{k}} \exp \left(\frac{-\left(\varepsilon_{k}-\varepsilon_{j}\right)}{k_{B} T}\right)
$$

$$
\frac{N_{j}}{N}=\frac{g_{j} \exp \left(\frac{-\varepsilon_{j}}{k_{B} T}\right)}{\sum_{i} g_{i} \exp \left(\frac{-\varepsilon_{i}}{k_{B} T}\right)}
$$

Example: If a gas is equilibrated at 300 K, which fraction of molecules (relative to the ground state) is at the first vibrational excited state 0.01 eV above the ground state? The states are equally degenerated.

$$
\begin{aligned}
\frac{N_{j}}{N_{k}} & =\frac{g_{j}}{g_{k}} \exp \left(\frac{-\left(\varepsilon_{k}-\varepsilon_{j}\right)}{k_{B} T}\right) \\
\frac{N_{2}}{N_{1}} & =\exp \left(\frac{-\left(\varepsilon_{2}-\varepsilon_{1}\right)}{k_{B} T}\right) \\
& =\exp \left(\frac{-0.01 \mathrm{eV}}{8.617 \times 10^{-5} \mathrm{eV} / \mathrm{K} \times 300 \mathrm{~K}}\right) \\
& =0.68
\end{aligned}
$$

Particle distributions

Number of microstates

$$
\begin{gathered}
\qquad W=N!\prod_{i} \frac{g_{i}^{N_{i}}}{N_{i}!} \\
\text { Wrong entropy! (Gibbs paradox) }
\end{gathered}
$$

Identical \&

Number of microstates

$$
W=\prod_{i} \frac{g_{i}^{N_{i}}}{N_{i}!}
$$

Correct entropy!

Indistiguibility is needed to describe classical systems statistically.

Gibbs discovered that in 1874!

Bosons

Fermions

$\uparrow \varepsilon(\mathrm{eV})$
 ε_{2}
 $g_{2}=3$
 $g_{1}=1$

One per sublevel.

Bosons

As many as we want in each sublevel.

Fermions

One per sublevel.

$$
\begin{gathered}
W_{B E}=\prod_{i} \frac{\left(N_{i}+g_{i}-1\right)!}{N_{i}!\left(g_{i}-1\right)!} \quad W_{F D}=\prod_{i} \frac{g_{i}!}{N_{i}!\left(g_{i}-N_{i}\right)!} \\
\frac{\partial}{\partial N_{j}}\left[\ln (W)+\alpha\left(N-\sum_{i} N_{i}\right)+\beta\left(E-\sum_{i} N_{i} \varepsilon_{i}\right)\right]=0
\end{gathered}
$$

Bose-Einstein distribution

$$
N_{i}=\frac{g_{i}}{\exp \left(\frac{\varepsilon_{i}-\mu}{k_{B} T}\right)-1}
$$

Fermi-Dirac distribution

$$
N_{i}=\frac{g_{i}}{\exp \left(\frac{\varepsilon_{i}-\mu}{k_{B} T}\right)+1}
$$

Bosons

As many as we want in each sublevel

$$
W_{B E}=\prod_{i} \frac{\left(N_{i}+g_{i}-1\right)!}{N_{i}!\left(g_{i}-1\right)!}
$$

Bose-Einstein distribution

$$
N_{i}=\frac{g_{i}}{\exp \left(\frac{\varepsilon_{i}-\mu}{k_{B} T}\right)-1}
$$

Classical particles

As many as we want in each sublevel

$$
W_{M B}=\prod_{i} \frac{g_{i}^{N_{i}}}{N_{i}!}
$$

$g_{i} \gg N_{i}$

$$
g_{i} \gg 1
$$

Maxwell-Boltzmann distribution
$N_{i}=g_{i} \exp \left(\frac{-\left(\varepsilon_{i}-\mu\right)}{k_{B} T}\right)$

Fermions

One per sublevel

$$
W_{F D}=\prod_{i} \frac{g_{i}!}{N_{i}!\left(g_{i}-N_{i}\right)!}
$$

Fermi-Dirac distribution

$$
N_{i}=\frac{g_{i}}{\exp \left(\frac{\varepsilon_{i}-\mu}{k_{B} T}\right)+1}
$$

The Gibbs picture

```
\mp@subsup{x}{i}{}}=(\mp@subsup{\mathbf{r}}{i1}{},\mp@subsup{\mathbf{p}}{i1}{},\mp@subsup{\mathbf{r}}{i2}{},\mp@subsup{\mathbf{p}}{i2}{},\ldots,\mp@subsup{\mathbf{r}}{iN}{},\mp@subsup{\mathbf{p}}{iN}{}
    \bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet
    \bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet
    \bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet
    \bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet
    \bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet
    \bullet ~
    \bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet
```



```
    \bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet
        \bullet ~
        \bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet
        \bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet
        \bullet ~
```


Gibbs Ensemble

Each point in the ensemble is a copy of the full system with N molecules.
$\bullet \bullet \bullet$ $\bullet \bullet \bullet$ $\bullet \bullet \bullet$ $\bullet \bullet \bullet$ $\bullet \bullet \bullet$

Microcanonical (or NVE) ensemble: all points have the same number of molecules and total energy.

Canonical (or NVT) ensemble: all points have the same number of molecules and temperature. They may have different total energies.

Grand-canonical (or $\boldsymbol{\mu V} \boldsymbol{T}$) ensemble: all points have the same temperature and chemical potential. They may have a different number of molecules and total energies.

Thermostats

Microcanonical ensemble (NVE)

Time
Canonical ensemble (NVT)

How can we run molecular dynamics with constant temperature?

Thermostats are algorithms that couple the system to an external bath, allowing energy exchange and thermalization.

Many thermostats are available in MD programs.
Some of the most popular are:

- Andersen [Andersen. J Chem Phys 1980, 72, 2384]
- Lowe-Andersen [Lowe. Europhys Lett 1999, 47, 145]
- Nosé-Hoover [Hoover. Phys Rev A 1985, 31, 1695]

	Nosé-Hoover	Andersen	Lowe-Andersen
Conserves momentum	Yes	No	Yes
Galilean invariant	No	No	Yes
Global/Local	Global	Local	Local
Enhances viscosity	No	No	Yes
Deterministic/Stochastic	Deterministic	Stochastic	Stochastic

Lowe. Europhys Lett 1999, 47, 145

Andersen thermostat

1. Define a collision frequency Γ
2. Integrate dynamics in one step Δt (eg, Velocity Verlet)
3. For each atom, sample a uniform random number r_{0} between 0 and 1 . If $r_{0}>\Gamma \Delta t$, do not change the velocity If $r_{0} \leq \Gamma \Delta t$, change the velocity as

$$
\mathbf{v}_{\alpha}^{(\text {new })}=\left(v_{\alpha, x}^{(\text {new })}, v_{\alpha, y}^{(\text {new })}, v_{\alpha, z}^{(\text {new })}\right)=\sqrt{\frac{k_{B} T}{M_{\alpha}}} \times\left(r_{x}, r_{y}, r_{z}\right)
$$

where $r_{x^{\prime}} r_{y^{\prime}}$ and r_{z} are Gaussian random numbers of unit variance; M_{α} is the mass of atom α

$$
\mathbf{v}_{\alpha}^{(\text {new })}=\sqrt{\frac{k_{B} T}{M_{\alpha}}} \times\left(r_{x}, r_{y}, r_{z}\right)
$$

The rationale for this formula is that for a system following Maxwell-Boltzmann statistics, the velocity is distributed as

$$
f(\mathbf{v}) d^{3} \mathbf{v}=\left[\frac{M}{2 \pi k_{B} T}\right]^{3 / 2} \exp \left(-\frac{M v^{2}}{2 K_{B} T}\right)
$$

This is a Gaussian distribution with standard deviation

$$
\sigma=\sqrt{\frac{k_{B} T}{M}}
$$

Thus, the Andersen thermostat is spreading the velocity as a Gaussian around the mean value $\mathbf{v}=0$

The Lowe-Anderson thermostat works similarly but with a more complicated velocity change.

It is done in the direction between atoms to conserve momentum.

For the Lowe-Andersen thermostat one considers pairs of particles located within a distance R_{T} of each other. A bath collision then involves taking a new relative velocity for the two particles from the Maxwellian for relative velocities. To conserve angular momentum this operation is only performed on the component of the relative velocity parallel to the line of centers. Furthermore, the new relative velocity is imposed in such a way that linear momentum is conserved. A bath collision then takes the form

$$
\begin{align*}
& \mathbf{v}_{i}^{*}(t)=\left\{\begin{array}{l}
\mathbf{v}_{i}(t), \quad \Gamma \Delta t<\zeta_{1} \\
\mathbf{v}_{i}+\left(\mu_{i j} / m_{i}\right)\left(\lambda-\left(\mathbf{v}_{i}-\mathbf{v}_{j}\right) \cdot \hat{\sigma}_{i j}\right) \hat{\sigma}_{i j}, \quad \Gamma \Delta t \geqslant \zeta_{1},
\end{array}\right. \\
& \mathbf{v}_{j}^{*}(t)=\left\{\begin{array}{l}
\mathbf{v}_{j}(t), \quad \Gamma \Delta t<\zeta_{1} \\
\mathbf{v}_{j}-\left(\mu_{i j} / m_{j}\right)\left(\lambda-\left(\mathbf{v}_{i}-\mathbf{v}_{j}\right) \cdot \hat{\sigma}_{i j}\right) \hat{\sigma}_{i j}, \quad \Gamma \Delta t \geqslant \zeta_{1} .
\end{array}\right. \tag{3}
\end{align*}
$$

Here $\hat{\sigma}_{i j}$ is the unit separation vector $\hat{\sigma}_{i j}=\left(\mathbf{r}_{i}-\mathbf{r}_{j}\right) /\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|, m_{i}$ and m_{j} are the masses of particles i and j, respectively, $\mu_{i j}\left(=m_{i} m_{j} /\left(m_{i}+m_{j}\right)\right)$ is the reduced mass of the pair, and λ is a stochastic variable $\lambda=\zeta_{2} \sqrt{\left(k_{B} T / \mu_{i j}\right)}$. The procedure is carried out sequentially for each pair, and the velocity appearing on the right hand side is always the current value (i.e., it can itself be a postcollisional value).

Canonical ensemble (NVT)

Shields et al. J Am Chem Soc 1998, 120, 5895
Asha et al. J Phys Chem B 2022, 126, 10608

To know more:

Philosophical perspective on statistical mechanic

- plato.stanford.edu/entries/statphys-statmech

The different statistics

- en.wikipedia.org/wiki/Maxwell-Boltzmann statistics
- en.wikipedia.org/wiki/Bose-Einstein statistics
- en.wikipedia.org/wiki/Fermi-Dirac statistics

Lagrange multipliers:

- youtu.be/yuqB-d5MjZA

Papers available for download at:
amubox.univ-amu.fr/s/xXAiMZrDPb9RMRX (Ask me for the password)

Appendix
Deriving Maxwell-Boltzmann distribution

In equilibrium,
$S=k_{B} \ln (W)$ is the largest.
We should search for the largest $\ln (W)$

Which value of N_{j} does maximize W
under the constraint that N and E are constant?

$$
\frac{\partial}{\partial N_{j}}\left[\ln (W)+\alpha\left(N-\sum_{i} N_{i}\right)+\beta\left(E-\sum_{i} N_{i} \varepsilon_{i}\right)\right]=0
$$

To find the maximum of $\ln W$, we need $\ln W$:

$$
\begin{aligned}
\ln (W) & =\ln \left(\prod_{i} \frac{g_{i}^{N_{i}}}{N_{i}!}\right) \\
& =\sum_{i}\left(\ln \left(g_{i}^{N_{i}}\right)-\ln \left(N_{i}!\right)\right) \\
& \approx \sum_{i}\left(N_{i} \ln \left(g_{i}\right)-N_{i} \ln \left(N_{i}\right)+N_{i}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { Remember } \\
& \qquad \ln (a b)=\ln (a)+\ln (b)
\end{aligned}
$$

> Stirling's approximation $\ln (N!) \approx N \ln (N)-N_{i}$ for $N \gg 1$

We must solve

$$
\frac{\partial}{\partial N_{j}}\left[\sum_{i}\left(N_{i} \ln \left(g_{i}\right)-N_{i} \ln \left(N_{i}\right)+N_{i}\right)+\alpha\left(N-\sum_{i} N_{i}\right)+\beta\left(E-\sum_{i} N_{i} \varepsilon_{i}\right)\right]=0
$$

First, we compute the derivative

$$
\begin{aligned}
& \frac{\partial}{\partial N_{j}}\left[\sum_{i}\left(N_{i} \ln \left(g_{i}\right)-N_{i} \ln \left(N_{i}\right)+N_{i}\right)+\alpha\left(N-\sum_{i} N_{i}\right)+\beta\left(E-\sum_{i} N_{i} \varepsilon_{i}\right)\right] \\
& =\frac{\partial}{\partial N_{j}} \sum_{i} N_{i}\left(\ln \left(g_{i}\right)-\ln \left(N_{i}\right)+1\right)+\alpha \frac{\partial}{\partial N_{j}}\left(N-\sum_{i} N_{i}\right)+\beta \frac{\partial}{\partial N_{j}}\left(E-\sum_{i} N_{i} \varepsilon_{i}\right) \\
& =\frac{\partial}{\partial N_{j}} N_{j}\left(\ln \left(g_{j}\right)-\ln \left(N_{j}\right)+1\right)-\alpha \frac{\partial}{\partial N_{j}} N_{j}-\beta \varepsilon_{j} \frac{\partial}{\partial N_{j}} N_{j} \\
& =\left(\ln \left(g_{j}\right)-\ln \left(N_{j}\right)+1\right)+N_{j} \frac{\partial}{\partial N_{j}}\left(\ln \left(g_{j}\right)-\ln \left(N_{j}\right)+1\right)-\alpha-\beta \varepsilon_{j} \\
& =\ln \left(g_{j}\right)-\ln \left(N_{j}\right)+1-\frac{N_{j}}{N_{j}}-\alpha-\beta \varepsilon_{j} \\
& =\ln \left(g_{j}\right)-\ln \left(N_{j}\right)-\alpha-\beta \varepsilon_{j}
\end{aligned}
$$

Solving

$$
\frac{\partial}{\partial N_{j}}\left[\ln (W)-\alpha\left(N-\sum_{i} N_{i}\right)-\beta\left(E-\sum_{i} N_{i} \varepsilon_{i}\right)\right]=\ln \left(g_{j}\right)-\ln \left(N_{j}\right)-\alpha-\beta \varepsilon_{j}=0
$$

gives N_{j} that maximizes W under constant N and E :

$$
N_{j}=g_{j} \exp \left(-\left(\alpha+\beta \varepsilon_{j}\right)\right)
$$

To find α and β :

$$
\begin{aligned}
\ln (W) & \approx \sum_{i} N_{i}\left(\ln \left(g_{i}\right)-\ln \left(N_{i}\right)+1\right) \\
& =\sum_{i} g_{i} e^{-\left(\alpha+\beta \varepsilon_{i}\right)}\left(\ln \left(g_{i}\right)-\ln \left(g_{i} e^{-\left(\alpha+\beta \varepsilon_{i}\right)}\right)+1\right) \\
& =\sum_{i} g_{i} e^{-\left(\alpha+\beta \varepsilon_{i}\right)}\left(\ln \left(g_{i}\right)-\ln \left(g_{i}\right)-\ln \left(e^{-\left(\alpha+\beta \varepsilon_{i}\right)}\right)+1\right) \\
& =\sum_{i} g_{i} e^{-\left(\alpha+\beta \varepsilon_{i}\right)}\left(\alpha+\beta \varepsilon_{i}+1\right) \\
& =(\alpha+1) \sum_{i} g_{i} e^{-\left(\alpha+\beta \varepsilon_{i}\right)}+\beta \sum_{i} g_{i} e^{-\left(\alpha+\beta \varepsilon_{i}\right)} \varepsilon_{i} \\
& =(\alpha+1) \sum_{i} N_{i}+\beta \sum_{i} N_{i} \varepsilon_{i} \\
& =(\alpha+1) N+\beta E
\end{aligned}
$$

Solve it to E :

$$
\begin{aligned}
E & =\frac{\ln (W)}{\beta}-\frac{N}{\beta}-\frac{\alpha N}{\beta} \\
& =\frac{S}{k_{B} \beta}-\frac{N}{\beta}-\frac{\alpha N}{\beta}
\end{aligned}
$$

Remember

$$
S=k_{B} \ln W
$$

Compare to the ideal gas:

$$
\begin{aligned}
E & =T S-P V+\mu N \\
& =T S-N k_{B} T+\mu N
\end{aligned}
$$

$$
\begin{aligned}
& \beta=\frac{1}{k_{B} T} \\
& \alpha=-\frac{\mu}{k_{B} T}
\end{aligned}
$$

