
L9 - Statistical Mechanics 1
Boltzman picture, Gibbs ensembles, and thermostats



“Ludwig Boltzmann, who spent much of his life studying statistical
mechanics, died in 1906, by his own hand. Paul Ehrenfest, carrying on
the work, died similarly in 1933. Now it is our turn to study statistical
mechanics.

Perhaps it will be wise to approach the subject cautiously”

David L. Goodstein – States of Matter, 2014



The Boltzmann picture
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Macroscopic state: P

Microscopic state: x = (r1, p1, r2, p2, ... , rN, pN)



A microstate corresponds to a single macrostate
x1 = (r11, p11, r12, p12, ... , r1N, p1N) → Pa

Many microstates may yield the same macrostate
x1 → Pa

x2 → Pa

x3 → Pa



Microstate space
x1 x2

xM
xi = (ri1, pi1, ri2, pi2, ... , riN, piN) 



Microstate space
x1 x2

xM
xi = (ri1, pi1, ri2, pi2, ... , riN, piN) 

Trajectory

xi+1 = (xi)

( ) → Classical: Newton, Hamilton EOM
( ) → Quantum: Schrödinger EOM



Microstate space
Pa Pb

Pq



Microstate space
W(Pa)=12 W(Pb)=28

W(Pq)=324



Microstate spaceS(Pa)=kB.ln(12)
=2.49 kB

S(Pb)=3.33 kB

S(Pq)= 5.78 kB

Boltzmann entropy

S(A)=kB.ln[W(A)]

kB = 8.61710-5 eV/K



Why does time flow in a single 
direction? 





Why does time flow in a single 
direction? 

The equilibrium region of the microstate space is so large that it
consists almost entirely of equilibrium microstates.

For this reason, a system that starts its time-evolution in a non-
equilibrium state always evolves into the equilibrium region and stays
there for a very long time.

A trajectory may take longer than the universe's lifetime to return to
the initial non-equilibrium region.

plato.stanford.edu/entries/statphys-statmech

https://plato.stanford.edu/entries/statphys-statmech


Second law of thermodynamics

S(I)  S(F)

The entropy of a closed system 
tends to increase or remain constant 

S(I)

S(F)



Ergodic hypothesis

In the long run, the time a trajectory spends in a region of the 
microstate space is proportional to the area of the region. 
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Li Li
1:99

cis trans

1) If we random sample Li-stilbene according to the 1:99 probability ratio,
we get 1% of cis and 99% of trans.

2) If we run a long molecular dynamics trajectory, Li-stilbene remains 1% of
the time in cis and 99% of the time in trans.



Maxwell-Boltzmann 
statistics
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N = j Nj

E = j Njj

If the system is in equilibrium, 
how many particles Ni

have energy i? 

en.wikipedia.org/wiki/Maxwell-Boltzmann_statistics
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Degeneracy

https://en.wikipedia.org/wiki/Maxwell-Boltzmann_statistics
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The distribution of microstates is

en.wikipedia.org/wiki/Maxwell-Boltzmann_statistics

https://en.wikipedia.org/wiki/Maxwell-Boltzmann_statistics


We have many W distributions 
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For example, for N = 3 and 4 energy levels, each with gi = 10: 
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In equilibrium, 
S = kB ln W is the largest.

We should search for the 
Nis that give the biggest 
ln W.



ln 0
!

iN

i

ij i

g

N N

  
=  

   


To find the maximum, we must solve
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However, to ensure that the total number of particles and 
energy are constant, we must solve

Lagrange multipliers
youtu.be/yuqB-d5MjZA

https://youtu.be/yuqB-d5MjZA
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We get the Maxwell-Boltzmann distribution

See the derivation in the Appendix to this presentation.
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Two extremely important results are



Example: If a gas is equilibrated at 300 K, which
fraction of molecules (relative to the ground state)
is at the first vibrational excited state 0.01 eV
above the ground state? The states are equally
degenerated.
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Particle distributions



Time

Identical & 
distinguishable Time

Identical & 
indistinguishable 
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Number of microstates

Wrong entropy! (Gibbs paradox) Correct entropy! 



Indistiguibility is needed to describe 
classical systems statistically.

Gibbs discovered that in 1874!

Jaynes, In Maximum entropy and Bayesian methods, Springer, 1992

https://bayes.wustl.edu/etj/articles/gibbs.paradox.pdf
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Bosons Fermions

As many as we want in each sublevel. One per sublevel.



Bosons
As many as we want in each sublevel.
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Fermions
One per sublevel.
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Bose-Einstein distribution
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Fermi-Dirac distribution

en.wikipedia.org/wiki/Bose-Einstein_statistics
en.wikipedia.org/wiki/Fermi-Dirac_statistics
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https://en.wikipedia.org/wiki/Bose-Einstein_statistics
https://en.wikipedia.org/wiki/Fermi-Dirac_statistics


Classical particles
As many as we want 

in each sublevel
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Maxwell-Boltzmann
distribution
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Fermi-Dirac 
distribution
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Bose-Einstein 
distribution
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The Gibbs picture



Ensemble

xM

xi = (ri1, pi1, ri2, pi2, ... , riN, piN) 

Gibbs Ensemble

Each point in the ensemble is a copy of the 
full system with N molecules.

It is NOT one molecule.



Microcanonical (or NVE) ensemble: all points have the same number
of molecules and total energy.

Canonical (or NVT) ensemble: all points have the same number of
molecules and temperature. They may have different total energies.

Grand-canonical (or VT) ensemble: all points have the same
temperature and chemical potential. They may have a different
number of molecules and total energies.



Thermostats
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How can we run molecular dynamics with 
constant temperature?  



Thermostats are algorithms that couple the system to an 
external bath, allowing energy exchange and thermalization.

Many thermostats are available in MD programs.

Some of the most popular are:

• Andersen [Andersen. J Chem Phys 1980, 72, 2384 ]

• Lowe-Andersen [Lowe. Europhys Lett 1999, 47, 145]

• Nosé-Hoover [Hoover. Phys Rev A 1985, 31, 1695]



Nosé-Hoover Andersen Lowe-Andersen

Conserves momentum Yes No Yes

Galilean invariant No No Yes

Global/Local Global Local Local

Enhances viscosity No No Yes

Deterministic/Stochastic Deterministic Stochastic Stochastic

Lowe. Europhys Lett 1999, 47, 145



Andersen. J Chem Phys 1980, 72, 2384

Andersen thermostat

1. Define a collision frequency G

2. Integrate dynamics in one step Dt (eg, Velocity Verlet)

3. For each atom, sample a uniform random number r0 between 0 and 1.
If r0 > GDt, do not change the velocity
If r0  GDt, change the velocity as

where rx, ry, and rz are Gaussian random numbers of unit variance; 
M is the mass of atom 
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The rationale for this formula is that for a system following 
Maxwell-Boltzmann statistics, the velocity is distributed as   
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Thus, the Andersen thermostat is spreading the velocity as 
a Gaussian around the mean value v = 0



The Lowe-Anderson thermostat 
works similarly but with a more 
complicated velocity change.

It is done in the direction 
between atoms to conserve 
momentum.

Koopman; Lowe. J Chem Phys 2006, 124, 204103
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Thermalization



Thermalization may 
require several steps. 

Shields et al. J Am Chem Soc 1998, 120, 5895
Asha et al. J Phys Chem B 2022, 126, 10608



Philosophical perspective on statistical mechanic
• plato.stanford.edu/entries/statphys-statmech

The different statistics
• en.wikipedia.org/wiki/Maxwell-Boltzmann_statistics
• en.wikipedia.org/wiki/Bose-Einstein_statistics
• en.wikipedia.org/wiki/Fermi-Dirac_statistics

Lagrange multipliers: 
• youtu.be/yuqB-d5MjZA

To know more:

Papers available for download at:
amubox.univ-amu.fr/s/xXAiMZrDPb9RMRX (Ask me for the password)

https://plato.stanford.edu/entries/statphys-statmech
https://en.wikipedia.org/wiki/Maxwell-Boltzmann_statistics
https://en.wikipedia.org/wiki/Bose-Einstein_statistics
https://en.wikipedia.org/wiki/Fermi-Dirac_statistics
https://youtu.be/yuqB-d5MjZA
https://amubox.univ-amu.fr/s/xXAiMZrDPb9RMRX


Appendix
Deriving Maxwell-Boltzmann distribution
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Which value of Nj does maximize W 
under the constraint that N and E are constant?

Lagrange multipliers: youtu.be/yuqB-d5MjZA

In equilibrium, 
S = kB ln(W) is the largest.

We should search for the largest ln(W)

https://youtu.be/yuqB-d5MjZA
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To find the maximum of ln W, we need ln W:

( ) ( )ln ! ln  for 1iN N N N N −

Stirling's approximation

( ) ( ) ( )ln ln lnab a b= +

Remember
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We must solve
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First, we compute the derivative
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Solving

( )( )expj j jN g  = − +

gives Nj that maximizes W under constant N and E: 
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To find  and :
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Solve it to E:

B

E TS PV N

TS Nk T N





= − +

= − +

Compare to the ideal gas:

lnBS k W=

Remember

T = temperature
 = chemical potential
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