L8 - Classical Mechanics 4

Mixed quantum classical dynamics
Hamilton and Lagrange formulations

Mixed Quantum-Classical Dynamics

Nonadiabatic dynamics

LIGHT AND
MOLECULES

Nonadiabatic dynamics

MOLECULES

Nonadiabatic dynamics

LIGHTAND
MOLECULES

Nonadiabatic dynamics

LIGHT AND
MOLECULES

Photoinduced phenomena in molecules involve the time evolution of the nuclear wavepacket through a manifold of electronic states

Modeling these processes requires considering the coupling between the nuclear and electronic motions (nonadiabatic regime)

Mixed quantum-classical (MQC) dynamics

1. Nuclei are treated via classical trajectories
2. Electrons are treated quantum mechanically
3. A nonadiabatic algorithm introduces post Born-Oppenheimer effects

MQC Dynamics

Classical EOM

$$
\overline{\mathbf{R}}_{0}, \overline{\mathbf{v}}_{0} \longrightarrow \overline{\mathbf{R}}_{\Delta t}, \overline{\mathbf{v}}_{\Delta t} \longrightarrow \overline{\mathbf{R}}_{2 \Delta t}, \overline{\mathbf{v}}_{2 \Delta t} \longrightarrow \overline{\mathbf{R}}_{3 \Delta t}, \overline{\mathbf{v}}_{3 \Delta t} \longrightarrow \overline{\mathbf{R}}_{4 \Delta t}, \overline{\mathbf{v}}_{4 \Delta t}
$$

$E_{K}\left(\overline{\mathbf{R}}_{0}\right)$	$E_{K}\left(\overline{\mathbf{R}}_{\Delta t}\right)$	$E_{K}\left(\overline{\mathbf{R}}_{2 \Delta t}\right)$	$E_{K}\left(\overline{\mathbf{R}}_{3 \Delta t}\right)$	$E_{K}\left(\overline{\mathbf{R}}_{4 \Delta t}\right)$
$\nabla E_{K}\left(\overline{\mathbf{R}}_{0}\right)$	$\nabla E_{K}\left(\overline{\mathbf{R}}_{\Delta t}\right)$	$\nabla E_{K}\left(\overline{\mathbf{R}}_{2 \Delta t}\right)$	$\nabla E_{K}\left(\overline{\mathbf{R}}_{3 \Delta t}\right)$	$\nabla E_{K}\left(\overline{\mathbf{R}}_{4 \Delta t}\right)$
$\sigma_{K L}\left(\overline{\mathbf{R}}_{0}\right)$	$\sigma_{K L}\left(\overline{\mathbf{R}}_{\Delta t}\right)$	$\sigma_{K L}\left(\overline{\mathbf{R}}_{2 \Delta t}\right)$	$\sigma_{K L}\left(\overline{\mathbf{R}}_{3 \Delta t}\right)$	$\sigma_{K L}\left(\overline{\mathbf{R}}_{4 \Delta t}\right)$

$$
\bar{c}_{K}(0) \longrightarrow \bar{c}_{K}(\Delta t) \longrightarrow \bar{c}_{K}(2 \Delta t) \longrightarrow \bar{c}_{K}(3 \Delta t) \longrightarrow \bar{c}_{K}(4 \Delta t)
$$

Quantum EOM

Averaging

6u!̣do H

Standard Methods for MOCD Mean field Ehrenfest

Mean-Field Ehrenfest Dynamics

- Propagate nuclei via classical trajectories on an averaged PES
- Compute the weights for the average solving electronic problem quantum mechanically

Derivation of EOM:
de Carvalho; Bouduban; Curchod; Tavernelli. Entropy 2014, 16, 62

The Equations-of-Motion (EOM) are

$$
\begin{array}{ll}
\frac{d^{2} \mathbf{R}_{\alpha}}{d t^{2}}=\frac{1}{M_{\alpha}} \mathbf{F}(\mathbf{R}) & \mathbf{F}(\mathbf{R})=-\sum_{I J} c_{I}^{*} c_{J}\left\langle\psi_{I}\right| \nabla \hat{H}_{e}\left|\psi_{J}\right\rangle \\
\frac{d c_{J}}{d t}=\sum_{K}-c_{K}\left(\frac{i}{\hbar} H_{J K}+\sigma_{J K}\right) & H_{J K}(\overline{\mathbf{R}}) \equiv\left\langle\psi_{J}\right| \hat{H}_{e}\left|\psi_{K}\right\rangle \\
& \sigma_{J K}(\overline{\mathbf{R}}) \equiv\left\langle\psi_{J} \left\lvert\, \frac{\partial \psi_{K}}{\partial t}\right.\right\rangle
\end{array}
$$

Pros:

- Clear and intuitive background
- Easy to implement
- It is the basis for electronic structure methods like TDHF and TDKS

Cons:

- Overcoherence
- Wrong asymptotic limits
- Lack of global info (tunneling, quantum interference, etc.)

To know more:

- Tully. Faraday Discuss 1998, 110, 407
- Zhu et al. J Chem Phys 2004, 120, 5543
- de Carvalho; Bouduban; Curchod; Tavernelli. Entropy 2014, 16, 62

Standard Methods for NA-MQC: Trajectory surface hopping

Surface Hopping Dynamics

- Propagate nuclei via classical trajectories on a single PES
- Allow trajectory to change PES via a stochastic algorithm
- Compute hop probabilities by solving electrons quantum mechanically

Fundamental paper:
Tully. J Chem Phys 1990, 93, 1061

EOM: Fewest-Switches Surface Hopping (FSSH) (adiabatic representation):

$$
\frac{d^{2} \mathbf{R}_{\alpha}}{d t^{2}}=\frac{1}{M_{\alpha}} \mathbf{F}(\mathbf{R}) \quad \mathbf{F}(\overline{\mathbf{R}})=-\nabla_{\alpha} E_{L}
$$

$$
\frac{d c_{J}}{d t}=\sum_{K}-c_{K}\left(\frac{i}{\hbar} E_{K}+\sigma_{J K}\right) \quad \sigma_{J K}(\mathbf{R}) \equiv\left\langle\psi_{J} \left\lvert\, \frac{\partial \psi_{K}}{\partial t}\right.\right\rangle
$$

$$
\begin{aligned}
& P_{L \rightarrow J}^{F S S H}=\max \left[0, \frac{-2 \Delta t}{\left|c_{L}\right|^{2}} \operatorname{Re}\left(\sigma_{L J} c_{J} c_{L}^{*}\right)\right] \\
& \sum_{K=1}^{J-1} P_{L \rightarrow K}^{F S S H}<r_{t} \leq \sum_{K=1}^{J} P_{L \rightarrow J}^{F S S H}
\end{aligned}
$$

time 0.000 fs

Pros:

- Clear and intuitive background
- Easy to implement
- Decoherence problems not as severe as in MFE

Cons:

- Still overcoherence
- Lack of global info (tunneling, quantum interference, etc.)

To know more:
Tully. Faraday Discuss 1998, 110, 407
Barbatti. WIREs: Comp Mol Sci 2011, 1, 620

Standard Methods for NA-MOC: Multiple spawning

Multiple Spawning Dynamics

- Nuclear wave function is expanded in frozen Gaussians
- Gaussians centers are propagated classically
- Number of Gaussian changes with time (spawning events)

Good starting point:
Curchod; Martínez. Chem Rev 2018, 118, 3305

Pros:

- In the limit, MS gives the exact solution

Cons:

- Expensive
- Difficult to implement

To know more:
Curchod; Martínez. Chem Rev 2018, 118, 3305
Worth; Robb; Lasorne. Mol Phys 2008, 106, 2077
Makhov; Glover; Martinez; Shalashilin. J Chem Phys 2014, 141, 054110

Newton-X

- Surface hopping \& Nuclear ensemble simulations
- Freeware
- Open source

Barbatti et al. JCTC 2022, 18, 6851
Barbatti et al. WIREs: Comp Mol Sci 2014, 4, 26
Barbatti et al. J Photochem Photobiol, A 2007, 190, 228

- Simulations with MRCI, MCSCF, CASPT2, ADC(2), TDDFT, TD-DFTB, FOMO-CI, OM2/CI, Analytical models, ML potentials
- Interfaces to Columbus, Turbomole, Gaussian, Bagel, Gamess, CP2K, DFTB+, ORCA, Mopac (Pisa), MNDO, ORCA, Molcas, MLatom

Costs of dynamics

Dynamics may be expensive

$$
T_{\text {total }} \approx N_{\text {Trajectories }} \times N_{\text {Single Points }} \times T_{\text {Single Point }}
$$

How much does dynamics cost? tinyurl.com/dyncost How many trajectories should we run? tinyurl.com/trajs

Dynamics may be expensive

$$
\begin{gathered}
T_{\text {total }} \approx N_{\text {Trajectories }} \times\left(\frac{\left.\tau_{\text {chem process }}\right)}{\Delta \tau}\right) \times T_{\text {Single Point }} \\
\begin{array}{ll}
N_{\text {Trajectories }} & =100 \text { trajectories } \\
T_{\text {Single Point }} & =6 \mathrm{~min}=0.1 \mathrm{CPUh} \\
\tau_{\text {chem process }} & =500,000 \mathrm{fs}=0.5 \mathrm{~ns} \\
\Delta \tau
\end{array} \\
T_{\text {total }} \approx 10 \mathrm{MCPUh} \\
\text { Price 1 CPUh }
\end{gathered}
$$

Dynamics leaves a huge carbon footprint

$1 \mathrm{CPUh} @ 32 \mathrm{~GB}=1.3 \mathrm{~g} \mathrm{CO}_{2} \mathrm{e}$ -
$10 \mathrm{MCPUh}=13 \mathrm{tCO}_{2} \mathrm{e}$

$11.5 \mathrm{tCO}_{2} \mathrm{e} /$ year
$\begin{aligned} 0 & \rightarrow \times 2 \\ \text { 齿 } & \rightarrow \times 7 \\ & \rightarrow \times 10 \\ & \rightarrow \times 12 \\ & \rightarrow \times 14\end{aligned}$

Pereira et al. Sci Comput Program 2021, 205, 102609 sites.google.com/view/energy-efficiency-languages

The Lagrange equation

Second Newton's law:
$m_{i} \frac{d^{2} \mathbf{r}_{i}}{d t^{2}}=\mathbf{F}_{i}$
Left: $\quad m_{i} \frac{d}{d t} \frac{d \mathbf{r}_{i}}{d t}=\frac{d}{d t}\left(m_{i} \frac{d \mathbf{r}_{i}}{d t}\right)=\frac{d}{d t}\left(m_{i} \mathbf{v}_{i}\right)=\frac{d \mathbf{p}_{i}}{d t}$
Right: $\mathbf{F}_{i}=-\nabla_{i} V=-\frac{\partial V}{\partial \mathbf{r}_{i}} \quad$ (conservative)
Second Newton's law for a conservative system:
$\frac{d \mathbf{p}_{i}}{d t}=-\frac{\partial V}{\partial \mathbf{r}_{i}}$

Second Newton's law:
$\frac{d \mathbf{p}_{i}}{d t}=-\frac{\partial V}{\partial \mathbf{r}_{i}}$
We want to write it in terms of the kinetic energy:
$T=\frac{1}{2} \sum_{k} m_{k} \mathbf{v}_{k}^{2}=\frac{1}{2} \sum_{k} m_{k} \dot{\mathbf{r}}_{k}^{2}$

Take the partial derivative
$\frac{\partial T}{\partial \dot{\mathbf{r}}_{i}}=\frac{\partial}{\partial \dot{\mathbf{r}}_{i}}\left(\frac{1}{2} \sum_{k} m_{k} \dot{\mathbf{r}}_{k}^{2}\right)=m_{i} \dot{\mathbf{r}}_{i}=\mathbf{p}_{i}$
$\frac{d}{d t} \frac{\partial T}{\partial \dot{\mathbf{r}}_{i}}=\frac{d \mathbf{p}_{i}}{d t}$

Replacing
$\frac{d}{d t} \frac{\partial T}{\partial \dot{\mathbf{r}}_{i}}=\frac{d \mathbf{p}_{i}}{d t}$ into $\frac{d \mathbf{p}_{i}}{d t}=-\frac{\partial V}{\partial \mathbf{r}_{i}}$ gives
$\rightarrow \frac{d}{d t} \frac{\partial T}{\partial \dot{\mathbf{r}}_{i}}=-\frac{\partial V}{\partial \mathbf{r}_{i}}$
Note that

$$
\begin{aligned}
& \frac{\partial\left(T\left(\dot{\mathbf{r}}_{i}\right)-V\left(\mathbf{r}_{i}\right)\right)}{\partial \dot{\mathbf{r}}_{i}}=\frac{\partial T\left(\dot{\mathbf{r}}_{i}\right)}{\partial \mathbf{r}_{i}} \\
& \frac{\partial\left(T\left(\dot{\mathbf{r}}_{i}\right)-V\left(\mathbf{r}_{i}\right)\right)}{\partial \mathbf{r}_{i}}=-\frac{\partial V\left(\dot{\mathbf{r}}_{i}\right)}{\partial \mathbf{r}_{i}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d}{d t}\left(\frac{\partial(T-V)}{\partial \dot{\mathbf{r}}_{i}}\right)=\frac{\partial(T-V)}{\partial \mathbf{r}_{i}} \\
& \text { or } \\
& \frac{d}{d t}\left(\frac{\partial(T-V)}{\partial \dot{\mathbf{r}}_{i}}\right)-\frac{\partial(T-V)}{\partial \mathbf{r}_{i}}=0
\end{aligned}
$$

$$
\frac{d}{d t}\left(\frac{\partial(T-V)}{\partial \dot{\mathbf{r}}_{i}}\right)-\frac{\partial(T-V)}{\partial \mathbf{r}_{i}}=0
$$

Define Lagrangian function

$$
L \equiv T-V
$$

We obtain the Lagrange's equations

$$
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{\mathbf{r}}_{i}}\right)-\frac{\partial L}{\partial \mathbf{r}_{i}}=0
$$

The Lagrange's equations can be written in terms of generalized coordinates \mathbf{q}_{i}

$$
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{\mathbf{q}}_{i}}\right)-\frac{\partial L}{\partial \mathbf{q}_{i}}=0 \quad L=T-V
$$

Where \mathbf{q}_{i} are functions of \mathbf{r}_{i}

$$
\begin{aligned}
& \mathbf{q}_{i}=\mathbf{q}_{i}\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \cdots, \mathbf{r}_{N}, t\right) \\
& \mathbf{r}_{i}=\mathbf{r}_{i}\left(\mathbf{q}_{1}, \mathbf{q}_{2}, \cdots, \mathbf{q}_{N}, t\right)
\end{aligned}
$$

Generalized coordinates allow including constraints (solid bodies, motion on surfaces, walls, etc.)

Generalized coordinates do not need to have length dimensions (angles, Fourier expansion amplitudes, etc.)

The Lagrange's equations are still valid for forces obtained from velocitydependent potentials

$$
V=V(\mathbf{q}, \dot{\mathbf{q}})
$$

For example, an electric charge e with mass m moving with velocity \mathbf{v} in a region with electric field \mathbf{E} and magnetic field \mathbf{B} :

$$
\begin{aligned}
& \mathbf{E}=-\nabla \phi-\frac{\partial \mathbf{A}}{\partial t} \\
& \mathbf{B}=\nabla \times \mathbf{A}
\end{aligned}
$$

The Lagrangian $L=T-V$ is

$$
L=\frac{1}{2} m v^{2}-e(\phi-\mathbf{A} \cdot \mathbf{v})
$$

Inserting it into Lagrange's equation yields

$$
m \frac{d^{2} \mathbf{r}}{d t^{2}}=e[\mathbf{E}+(\mathbf{v} \times \mathbf{B})]
$$

Car-Parrinello molecular dynamics (CPMD)

Car-Parrinello Lagrangian

Orthogonality constraint

$$
L=\frac{1}{2}\left(\sum_{\alpha}^{\text {nuclei }} M_{\alpha} \dot{\mathbf{R}}_{\alpha}^{2}+\mu \sum_{i}^{\text {orbitals }}\left\langle\dot{\psi}_{i} \mid \dot{\psi}_{i}\right\rangle\right)-E[\mathbf{R},\{\psi\}]+\sum_{i j} \Lambda_{i j}\left(\left\langle\psi_{i} \mid \psi_{j}\right\rangle-\delta_{i j}\right)
$$

Generalized T
Generalized V
μ - fictitious electron mass
ψ_{i} - Kohn-Sham orbitals

Car-Parrinello EOM

$$
\begin{aligned}
& M_{\alpha} \ddot{\mathbf{R}}_{\alpha}=-\nabla_{\alpha} E[\mathbf{R},\{\psi\}]+\sum_{i j} \Lambda_{i j} \nabla_{\alpha}\left\langle\psi_{i} \mid \psi_{j}\right\rangle \\
& \mu \ddot{\psi}_{i}=-h(\mathbf{R},\{\psi\}) \psi_{i}+\sum_{j} \Lambda_{i j} \psi_{j}
\end{aligned}
$$

μ - fictitious electron mass
ψ_{i} - Kohn-Sham orbitals
h-One particle Hamiltonian

CPMD

Classical EOM

$$
\overline{\mathbf{R}}_{0}, \overline{\mathbf{v}}_{0} \longrightarrow \overline{\mathbf{R}}_{\Delta t}, \overline{\mathbf{v}}_{\Delta t} \longrightarrow \overline{\mathbf{R}}_{2 \Delta t}, \overline{\mathbf{v}}_{2 \Delta t} \longrightarrow \overline{\mathbf{R}}_{3 \Delta t}, \overline{\mathbf{v}}_{3 \Delta t} \longrightarrow \overline{\mathbf{R}}_{4 \Delta t}, \overline{\mathbf{v}}_{4 \Delta t}
$$

$$
E\left(\overline{\mathbf{R}}_{0}, \psi_{i}\right) \quad E\left(\overline{\mathbf{R}}_{\Delta t}, \psi_{i}\right) \quad E\left(\overline{\mathbf{R}}_{2 \Delta t}, \psi_{i}\right) \quad E\left(\overline{\mathbf{R}}_{3 \Delta t}, \psi_{i}\right) \quad E\left(\overline{\mathbf{R}}_{4 \Delta t}, \psi_{i}\right)
$$

$$
\nabla E\left(\overline{\mathbf{R}}_{0}, \psi_{i}\right) \quad \nabla E\left(\overline{\mathbf{R}}_{\Delta t}, \psi_{i}\right) \quad \nabla E\left(\overline{\mathbf{R}}_{2 \Delta t}, \psi_{i}\right) \quad \nabla E\left(\overline{\mathbf{R}}_{3 \Delta t}, \psi_{i}\right) \quad \nabla E\left(\overline{\mathbf{R}}_{4 \Delta t}, \psi_{i}\right)
$$

$$
\nabla_{\alpha}\left\langle\psi_{i} \mid \psi_{j}\right\rangle \quad \nabla_{\alpha}\left\langle\psi_{i} \mid \psi_{j}\right\rangle \quad \nabla_{\alpha}\left\langle\psi_{i} \mid \psi_{j}\right\rangle \quad \nabla_{\alpha}\left\langle\psi_{i} \mid \psi_{j}\right\rangle \quad \nabla_{\alpha}\left\langle\psi_{i} \mid \psi_{j}\right\rangle
$$

$$
\psi(0)
$$

$$
\psi(\Delta t)
$$

$$
\psi(2 \Delta t)
$$

$$
\psi(3 \Delta t)
$$

$$
\psi(4 \Delta t)
$$

Quantum EOM

QM treatment of electrons allows CPMD to capture electronic effects, such as charge transfer, bond breaking, and formation.

CPMD depends on the parameter μ.
CPMD is more expensive than BOMD. Costs are alleviated with plane wave basis sets.

BOMD is more advantageous for non-reactive dynamics.
CPMD can be run with CPMD and CP2K programs.

Hamilton's equations

For regular coordinates

$$
\frac{\partial L}{\partial \dot{\mathbf{r}}}=\frac{\partial(T(\dot{\mathbf{r}})-V(\mathbf{r}))}{\partial \dot{\mathbf{r}}}=\frac{\partial}{\partial \dot{\mathbf{r}}}\left(\frac{1}{2} m \dot{\mathbf{r}}^{2}\right)=m \dot{\mathbf{r}}=\mathbf{p}
$$

It motivated defining the generalized (canonical) momentum

$$
\mathbf{p} \equiv \frac{\partial L}{\partial \dot{\mathbf{q}}}
$$

It is possible to reformulate the equations of motion from

$$
(\mathbf{q}, \dot{\mathbf{q}}, t)
$$

to

$$
(\mathbf{q}, \mathbf{p}, t)
$$

To do that, we define the Hamiltonian function as

$$
H(\mathbf{q}, \mathbf{p}, t) \equiv \dot{\mathbf{q}} \mathbf{p}-L(\mathbf{q}, \dot{\mathbf{q}}, t)
$$

$$
H(\mathbf{q}, \mathbf{p}, t) \equiv \dot{\mathbf{q}} \mathbf{p}-L(\mathbf{q}, \dot{\mathbf{q}}, t)
$$

Now, we take the derivatives

$$
\ln \mathbf{p}: \quad \frac{\partial H(\mathbf{q}, \mathbf{p}, t)}{\partial \mathbf{p}}=\frac{\partial(\dot{\mathbf{q}} \mathbf{p})}{\partial \mathbf{p}}-\frac{\partial L(\mathbf{q}, \dot{\mathbf{q}}, t)}{\partial \mathbf{p}}=\dot{\mathbf{q}}=\frac{d \mathbf{q}}{d t}
$$

$$
\ln \mathbf{q}: \quad \frac{\partial H(\mathbf{q}, \mathbf{p}, t)}{\partial \mathbf{q}}=\frac{\partial(\dot{\mathbf{q}} \mathbf{p})}{\partial \mathbf{q}}-\frac{\partial L(\mathbf{q}, \dot{\mathbf{q}}, t)}{\partial \mathbf{q}}=-\frac{\partial L(\mathbf{q}, \dot{\mathbf{q}}, t)}{\partial \mathbf{q}}
$$

$$
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{\mathbf{q}}}\right)-\frac{\partial L}{\partial \mathbf{q}}=0 \Longleftrightarrow \frac{d}{d t}(\mathbf{p})-\left(-\frac{\partial H}{\partial \mathbf{q}}\right)=0 \Longleftrightarrow \frac{\partial H}{\partial \mathbf{q}}=-\frac{d \mathbf{p}}{d t}
$$

$$
\mathbf{p} \equiv \frac{\partial L}{\partial \dot{\mathbf{q}}}
$$

The Lagrange's equations
$\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{\mathbf{q}}}\right)-\frac{\partial L}{\partial \mathbf{q}}=0$
become the Hamilton's equations

$$
\begin{aligned}
& \frac{d \mathbf{q}}{d t}=\frac{\partial H}{\partial \mathbf{p}} \\
& \frac{d \mathbf{p}}{d t}=-\frac{\partial H}{\partial \mathbf{q}}
\end{aligned}
$$

with the Hamiltonian defined as

$$
H(\mathbf{q}, \mathbf{p}, t) \equiv \dot{\mathbf{q}} \mathbf{p}-L(\mathbf{q}, \dot{\mathbf{q}}, t)
$$

1. The equations defining the generalized coordinates \mathbf{q} do not depend explicitly on time.
2. The forces are derivable from a conservative potential.
then, the Hamiltonian is the total energy

$$
H=T+V=E
$$

Taking a step back

Classical Mechanics

The state of a classical system is determined by solving

$$
\begin{aligned}
& \frac{d \mathbf{q}}{d t}=\frac{\partial H}{\partial \mathbf{p}} \\
& \frac{d \mathbf{p}}{d t}=-\frac{\partial H}{\partial \mathbf{q}}
\end{aligned}
$$

for both \mathbf{q} and \mathbf{p}.

For a conservative system, the Hamiltonian function is

$$
H=T+V
$$

Quantum Mechanics

The state of a quantum system is determined by solving

$$
i \hbar \frac{\partial|\psi\rangle}{\partial t}=\hat{H}|\psi\rangle
$$

either for

$$
\psi(\mathbf{q})=\langle\mathbf{q} \mid \psi\rangle
$$

or

$$
\psi(\mathbf{p})=\langle\mathbf{p} \mid \psi\rangle
$$

For a conservative system, the Hamiltonian operator is

$$
\hat{H}=\hat{T}+\hat{V}
$$

Quantum Statistical

many

Mechanics

$$
i \hbar \frac{\mathrm{~d} \rho}{\mathrm{~d} t}=[\hat{H}, \rho]
$$

Classical Statistical Mechanics

$$
\frac{\partial \rho}{\partial t}=-\{\rho, H\}
$$

few

Classical
Mechanics

$$
\frac{d \mathbf{q}}{d t}=\frac{\partial H}{\partial \mathbf{p}} \quad \frac{d \mathbf{p}}{d t}=-\frac{\partial H}{\partial \mathbf{q}}
$$

large

To know more:

Lagrange's equations, Hamilton's equations

- Goldstein, Classical mechanics. 1980. Ch 1, 2, 8

Mixed quantum-classical methods

- Crespo-Otero; Barbatti. Chem Rev 2018, 118, 7026

Cost of dynamics

- How much does dynamics cost? tinyurl.com/dyncost
- How many trajectories should we run? tinyurl.com/trajs

Papers available for download at:
amubox.univ-amu.fr/s/xXAiMZrDPb9RMRX (Ask me for the password)

