TD2 - Math review

Basic mathematics for quantum mechanics

Basic vector operation

Strongly recommended: Linear algebra course by 3Blue1Brown

Essence of linear algebra

3Blue1Brown
 Course

16 videos Updated today

$$
\equiv+\quad \Rightarrow \quad \underline{ } \quad \vdots
$$

$$
\begin{aligned}
\overrightarrow{\mathbf{v}} & =a_{x} \hat{\mathbf{e}}_{x}+a_{y} \hat{\mathbf{e}}_{y} \\
& =\binom{a_{x}}{a_{y}} \\
\hat{\mathbf{e}}_{x} & =\binom{1}{0} \\
\hat{\mathbf{e}}_{y} & =\binom{0}{1}
\end{aligned}
$$

$$
\begin{array}{r}
\overrightarrow{\mathbf{v}}=a_{x} \hat{\mathbf{e}}_{x}+a_{y} \hat{\mathbf{e}}_{y} \\
\overrightarrow{\mathbf{u}}=b_{x} \hat{\mathbf{e}}_{x}+b_{y} \hat{\mathbf{e}}_{y}
\end{array}
$$

Scalar product

$$
\overrightarrow{\mathbf{v}} \cdot \overrightarrow{\mathbf{u}} \equiv a_{x} b_{x}+a_{y} b_{y}
$$

It's a matrix multiplication

$$
\overrightarrow{\mathbf{v}}^{\dagger} \cdot \overrightarrow{\mathbf{u}}=\left(\begin{array}{ll}
a_{x} & a_{y}
\end{array}\right)\binom{b_{x}}{b_{y}}
$$

$$
\overrightarrow{\mathbf{v}}=a_{x} \hat{\mathbf{e}}_{x}+a_{y} \hat{\mathbf{e}}_{y}
$$

Projection

$$
\begin{aligned}
& v_{x}=\hat{\mathbf{e}}_{x}^{\dagger} \cdot \overrightarrow{\mathbf{v}}=\left(\begin{array}{ll}
1 & 0
\end{array}\right)\binom{a_{x}}{a_{y}}=a_{x} \\
& v_{y}=\hat{\mathbf{e}}_{y}^{\dagger} \cdot \overrightarrow{\mathbf{v}}=\left(\begin{array}{ll}
0 & 1
\end{array}\right)\binom{a_{x}}{a_{y}}=a_{y}
\end{aligned}
$$

Quantum state

$$
\begin{aligned}
|\psi\rangle & =a_{1}\left|\varphi_{1}\right\rangle+a_{2}\left|\varphi_{2}\right\rangle \\
& =\binom{a_{1}}{a_{2}}
\end{aligned}
$$

It's analogous to

$$
\overrightarrow{\mathbf{v}}=a_{x} \hat{\mathbf{e}}_{x}+a_{y} \hat{\mathbf{e}}_{y}
$$

$$
=\binom{a_{x}}{a_{y}}
$$

However, a_{1} and a_{2} are complex
$a_{n}=\alpha+\beta i \quad i^{2}=-1$

Quantum state

$$
\begin{aligned}
& |\psi\rangle=a_{1}\left|\varphi_{1}\right\rangle+a_{2}\left|\varphi_{2}\right\rangle \\
& |v\rangle=b_{1}\left|\varphi_{1}\right\rangle+b_{2}\left|\varphi_{2}\right\rangle
\end{aligned}
$$

$$
\text { State } 2 \longrightarrow E_{2},\left|\varphi_{2}\right\rangle
$$

Scalar product

$$
\begin{aligned}
& \langle\psi \| v\rangle \equiv\langle\psi \mid v\rangle=a_{1}^{*} b_{1}+a_{2}^{*} b_{2} \\
& a_{1}^{*}=(\alpha+\beta i)^{*}=\alpha-\beta i
\end{aligned}
$$

It's a matrix multiplication

$$
\langle\psi \mid v\rangle=\left(\begin{array}{ll}
a_{1}^{*} & a_{2}^{*}
\end{array}\right)\binom{b_{x}}{b_{y}}
$$

$$
\begin{aligned}
|\psi\rangle & =a_{1}\left|\varphi_{1}\right\rangle+a_{2}\left|\varphi_{2}\right\rangle \\
& =\binom{a_{1}}{a_{2}}
\end{aligned}
$$

Projection

$$
\text { State } 1 \longrightarrow E_{1},\left|\varphi_{1}\right\rangle
$$

$$
\begin{aligned}
\left\langle\varphi_{1} \| \psi\right\rangle & \equiv\left\langle\varphi_{1} \mid \psi\right\rangle \\
& =\left(\begin{array}{ll}
1 & 0
\end{array}\right)\binom{a_{1}}{a_{2}}=a_{1} \\
\left\langle\varphi_{2} \mid \psi\right\rangle & =\left(\begin{array}{ll}
0 & 1
\end{array}\right)\binom{a_{1}}{a_{2}}=a_{2}
\end{aligned}
$$

State 4 \qquad $E_{4},\left|\varphi_{4}\right\rangle$
State $3 \longrightarrow E_{3},\left|\varphi_{4}\right\rangle$

State $2 \longrightarrow E_{2},\left|\varphi_{2}\right\rangle$

State $1 \longrightarrow E_{1},\left|\varphi_{1}\right\rangle$

Quantum state

$$
|\psi\rangle=a_{1}\left|\varphi_{1}\right\rangle+a_{2}\left|\varphi_{2}\right\rangle+a_{3}\left|\varphi_{3}\right\rangle+a_{4}\left|\varphi_{4}\right\rangle
$$

$$
=\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3} \\
a_{4}
\end{array}\right)
$$

Projection on state 2, for example

$$
\left\langle\varphi_{2} \mid \psi\right\rangle=\left(\begin{array}{llll}
0 & 1 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3} \\
a_{4}
\end{array}\right)=a_{2}
$$

State $4 \longrightarrow E_{4},\left|\varphi_{4}\right\rangle$
State $3 \longrightarrow E_{3},\left|\varphi_{4}\right\rangle$
State $2 \longrightarrow E_{2},\left|\varphi_{2}\right\rangle$

State $1 \longrightarrow E_{1},\left|\varphi_{1}\right\rangle$

Quantum state

$$
|\psi\rangle=\sum_{n} a_{n}\left|\varphi_{n}\right\rangle
$$

Projection on state 2 , for example

$$
\begin{aligned}
\left\langle\varphi_{2} \mid \psi\right\rangle & =\left\langle\varphi_{2}\right| \sum_{n} a_{n}\left|\varphi_{n}\right\rangle \\
& =\sum_{n} a_{n}\left\langle\varphi_{2} \mid \varphi_{n}\right\rangle \\
& =\sum_{n} a_{n} \delta_{2 n} \quad \delta_{i j}= \begin{cases}1 & i=j \\
0 & i \neq j\end{cases} \\
& =0+a_{2}+0+\cdots=a_{2}
\end{aligned}
$$

$c|\psi\rangle=|\varphi\rangle$

$$
\left|\psi_{1}\right\rangle+\left|\psi_{2}\right\rangle=|\varphi\rangle
$$

$\langle\psi| \times|\varphi\rangle \equiv\langle\psi \mid \varphi\rangle=c$
$\left|\psi_{1}\right\rangle \times\left|\psi_{2}\right\rangle \rightarrow$ forbidden!
$|\varphi\rangle \times\langle\psi| \equiv|\varphi\rangle\langle\psi|=\hat{O}$
$\hat{O}|\psi\rangle=|\varphi\rangle$
operator
vector

Consider
$|\psi\rangle=\sum_{n} a_{n}\left|\varphi_{n}\right\rangle \quad$ with $\quad\left\langle\varphi_{m} \mid \varphi_{n}\right\rangle=\delta_{m n}$

1. Show that

$$
a_{m}=\left\langle\varphi_{m} \mid \psi\right\rangle
$$

2. Verify that

$$
|\psi\rangle=\sum_{n}\left|\varphi_{n}\right\rangle\left\langle\varphi_{n} \mid \psi\right\rangle
$$

3. Show that

$$
\sum_{n}\left|\varphi_{n}\right\rangle\left\langle\varphi_{n}\right|=1
$$

Basis change

$$
\begin{aligned}
& \overrightarrow{\mathbf{v}}=a_{x} \hat{\mathbf{e}}_{x}+a_{y} \hat{\mathbf{e}}_{y} \\
& \overrightarrow{\mathbf{v}}=b_{x^{\prime}} \hat{\mathbf{e}}_{x^{\prime}}+b_{y^{\prime}} \hat{\mathbf{e}}_{y^{\prime}}
\end{aligned}
$$

Consider
$|\psi\rangle=\sum_{n} a_{n}\left|\varphi_{n}\right\rangle$
Show that this vector is
$|\psi\rangle=\sum_{k} b_{k}\left|\chi_{k}\right\rangle$
where
$b_{k}=\sum_{n} a_{n}\left\langle\chi_{k} \mid \varphi_{n}\right\rangle$

Hint: Use
$\sum_{k}\left|\chi_{k}\right\rangle\left\langle\chi_{k}\right|=1$

Linear transformation

$$
\begin{aligned}
& \overrightarrow{\mathbf{v}}=a_{x} \hat{\mathbf{e}}_{x}+a_{y} \hat{\mathbf{e}}_{y} \\
& \mathbf{T}=\left(\begin{array}{ll}
t_{11} & t_{12} \\
t_{21} & t_{22}
\end{array}\right)
\end{aligned}
$$

Transformation

$$
\begin{aligned}
\mathbf{T} \overrightarrow{\mathbf{v}} & =\left(\begin{array}{ll}
t_{11} & t_{12} \\
t_{21} & t_{22}
\end{array}\right)\binom{a_{x}}{a_{y}} \\
& =\binom{t_{11} a_{x}+t_{12} a_{y}}{t_{21} a_{x}+t_{22} a_{y}} \\
& =\overrightarrow{\mathbf{u}}
\end{aligned}
$$

Quantum state

$$
|\psi\rangle=a_{1}\left|\varphi_{1}\right\rangle+a_{2}\left|\varphi_{2}\right\rangle
$$

Operator

$$
\hat{O}=\left(\begin{array}{ll}
O_{11} & O_{12} \\
O_{21} & O_{22}
\end{array}\right)
$$

Transformation

$$
\begin{aligned}
\hat{O}|\psi\rangle & =\left(\begin{array}{ll}
O_{11} & O_{12} \\
O_{21} & O_{22}
\end{array}\right)\binom{a_{1}}{a_{2}} \\
& =\binom{O_{11} a_{1}+O_{12} a_{2}}{O_{21} a_{1}+O_{22} a_{2}} \\
& =|v\rangle
\end{aligned}
$$

$$
\begin{array}{ll}
\text { State } 4 & E_{4},\left|\varphi_{4}\right\rangle \\
\text { State } 3 & E_{3},\left|\varphi_{4}\right\rangle
\end{array}
$$

$$
\text { State } 2 \longrightarrow E_{2},\left|\varphi_{2}\right\rangle
$$

State $1 \longrightarrow E_{1},\left|\varphi_{1}\right\rangle$

Operation

$$
\hat{O}|\psi\rangle=|v\rangle
$$

Quantum state

$$
|\psi\rangle=\sum_{n} a_{n}\left|\varphi_{n}\right\rangle
$$

The transformation is linear if

$$
\hat{O} \sum_{n} a_{n}\left|\varphi_{n}\right\rangle=\sum_{n} a_{n} \hat{O}\left|\varphi_{n}\right\rangle
$$

Eigenvectors and eigenvalues
Eigenvector

$$
\hat{H}|\psi\rangle=E|\psi\rangle
$$

Eigenvalue

Eigenvectors

 Eigenvalues

Continuous spectra

$$
\begin{array}{ll}
\hat{A}\left|a_{m}\right\rangle=a_{m}\left|a_{m}\right\rangle & \hat{\xi}\left|\xi^{\prime}\right\rangle=\xi^{\prime}\left|\xi^{\prime}\right\rangle \\
\left\langle a_{m} \mid a_{n}\right\rangle=\delta_{m n} & \left\langle\xi^{\prime} \mid \xi^{\prime \prime}\right\rangle=\delta^{\prime}\left(\xi^{\prime}-\xi^{\prime \prime}\right) \\
\sum_{n}\left|a_{n}\right\rangle\left\langle a_{n}\right|=1 & \int d \xi^{\prime}\left|\xi^{\prime}\right\rangle\left\langle\xi^{\prime}\right|=1 \\
|a\rangle=\sum_{n}\left|a_{n}\right\rangle\left\langle a_{n} \mid a\right\rangle & |a\rangle=\int \xi^{\prime}\left|\xi^{\prime}\right\rangle\left\langle\xi^{\prime} \mid a\right\rangle
\end{array}
$$

$$
\begin{aligned}
& |\alpha\rangle=\int d \xi^{\prime}\left|\xi^{\prime}\right\rangle\left\langle\xi^{\prime} \mid \alpha\right\rangle \\
& \alpha\left(\chi^{\prime}\right) \equiv\left\langle\xi^{\prime} \mid \alpha\right\rangle \quad \text { Wave function } \\
& |\alpha\rangle=\int d \xi^{\prime} \alpha\left(\xi^{\prime}\right)\left|\xi^{\prime}\right\rangle
\end{aligned}
$$

Example

$$
\begin{array}{ll}
\text { Position basis } \quad\langle x \mid \psi\rangle=\psi(x) & |\psi\rangle=\int d x \psi(x)|x\rangle \\
\text { Momentum basis } \quad\langle p \mid \psi\rangle=\psi(p) & |\psi\rangle=\int d p \psi(p)|p\rangle
\end{array}
$$

Recommended:
 Quantum mechanics course by ViaScience

Quantum Mechanics

ViaScience

30 videos 345,216 views Last updated on Jul 17, 2021

```
#+ & च :
```

Play all
\rightarrow Shuffle

This series draws from several sources, especially from the 1935 text by Pauling and Wilson,
Introduction to Quantum Mechanics, reprinted by Dover Publications, 1985, ISBN 978-0-486-64871-2; Cohen-Tannoudji, Diu and Laloe, Quantum Mechanics, Wiley, 1977, ISBN 0-471-16432-1; and I. N. Levine, Quantum Chemistry, 7th ed., Pearson, 2013, ISBN 978-0321803450.

To know more:
Bras and kets

- Sakurai, Modern quantum mechanics, 1994, Ch 1.

Available for download at: amubox.univ-amu.fr/s/xXAiMZrDPb9RMRX Ask me for the password.

For TP2 next week (9 Oct):

- Bring a list of 5 references you think are important for your topic review
- Vijay and I be there to discuss your topic. Come with questions!

