L2 - Quantum Mechanics 2

Quantum chemistry

Previously on...

Computational simulations of nanosystems

A classical particle
is a particle (!)

A quantum particle delocalizes over space

Schrödinger Equation

$$
i \hbar \frac{\partial \Psi}{\partial t}=H \Psi
$$

Ψ is the wave function
H is the Hamiltonian operator
$\hbar=6.582 \times 10^{-16} \mathrm{eV} . \mathrm{s}$ is the Planck constant

If the Hamiltonian does not depend on time

Eigenvalue

If we have more than one particle, we still write a single wave function.
However, the wave function now depends on the coordinates of all particles.

For two particles:

$$
\Psi\left(\mathbf{r}_{1}, \mathbf{r}_{2}, t\right)
$$

For N particles:

$$
\Psi\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \cdots, \mathbf{r}_{N}, t\right)
$$

Time-independent BO adiabatic formulation
BO molecular wave function

$$
\Psi_{n j}^{B O}(\mathbf{R}, \mathbf{r})=\varphi_{n}(\mathbf{r} ; \mathbf{R}) \chi_{n j}(\mathbf{R})
$$

Nuclear Schrödinger equation

$$
\left(T_{n u c}(\mathbf{R})+E_{n}(\mathbf{R})\right) \chi_{n j}(\mathbf{R})=\varepsilon_{n j} \chi_{n j}(\mathbf{R})
$$

Electronic Schrödinger equation

$$
\left(T_{\text {elec }}(\mathbf{r})+V(\mathbf{r}, \mathbf{R})\right) \varphi_{n}(\mathbf{r} ; \mathbf{R})=E_{n}(\mathbf{R}) \varphi_{n}(\mathbf{r} ; \mathbf{R})
$$

$$
\left(T_{\text {elec }}(\mathbf{r})+V(\mathbf{r}, \mathbf{R})\right) \varphi_{n}(\mathbf{r} ; \mathbf{R})=E_{n}(\mathbf{R}) \varphi_{n}(\mathbf{r} ; \mathbf{R})
$$

Riding the molecular roller coaster

Laying down the ground rules

1. Each valley corresponds to a different set of molecules.
2. We can only move between two valleys by rearranging the nuclear positions. We cannot add or remove nuclei after the ride starts.
3. We can only move between valleys if the $E(\mathbf{R})$ remains smaller than the total energy.

- Nuclear quantum delocalization (Tunneling)
- EM fields
(photoabsorption, stimulated emission)
- Diabatic mixing (internal conversion, intersystem crossing)
- Vacuum fluctuations (fluorescence, phosphorescence)

Setting the quantum patches

4. A proton can tunnel to the other valley even if the total energy is slightly lower than the barrier maximum. We know the tunneling probability.
5. If the track bifurcates during the reaction, the molecule can follow either, releasing or absorbing heat, with known probabilities.
6. If the molecule is in a lower track, it can be promoted to an upper track by absorbing light. We know the probability of populating each higher track.
7. If the molecule is in an upper track, it can spontaneously go to the lower track by emitting light. We know the probability of this emission happening.

- youtube.com/user/mbarbatti

BO approximation: Time-dependent perspective

Time-independent
$H(\mathbf{R}, \mathbf{r}) \Psi(\mathbf{R}, \mathbf{r})=\varepsilon \Psi(\mathbf{R}, \mathbf{r})$

Time-dependent
$H(\mathbf{R}, \mathbf{r}) \Psi^{k}(\mathbf{R}, \mathbf{r}, t)=i \hbar \partial_{t} \Psi^{k}(\mathbf{R}, \mathbf{r}, t)$

Nuclear equation

$$
\Psi(\mathbf{R}, \mathbf{r})=\sum_{n} \varphi_{n}(\mathbf{r} ; \mathbf{R}) h_{n}(\mathbf{R})
$$

$$
\Psi(\mathbf{R}, \mathbf{r}, t)=\sum_{n} \varphi_{n}(\mathbf{r} ; \mathbf{R}) h_{n}(\mathbf{R}, t)
$$

Electronic equation

$$
\left(T_{\text {elec }}(\mathbf{r})+V(\mathbf{r}, \mathbf{R})\right) \varphi_{n}(\mathbf{r} ; \mathbf{R})=E_{n}(\mathbf{R}) \varphi_{n}(\mathbf{r} ; \mathbf{R})
$$

Time-dependent Born-Huang formulation

$$
\begin{aligned}
& H_{n^{\prime}} h_{n^{\prime}}-i \hbar \partial_{t} h_{n^{\prime}}+\sum_{n} N_{n^{\prime} n}=0 \\
& H_{n^{\prime}}=T_{n u c}+E_{n^{\prime}} \\
& N_{n^{\prime} n}=-\frac{\hbar^{2}}{2 \mathbf{M}}\left[\left\langle\varphi_{n^{\prime}} \mid \nabla_{\mathbf{R}}^{2} \varphi_{n}\right\rangle_{\mathbf{r}} h_{n}+2\left\langle\varphi_{n^{\prime}} \mid \nabla_{\mathbf{R}} \varphi_{n}\right\rangle_{\mathbf{r}} \cdot \nabla_{\mathbf{R}} h_{n}\right]
\end{aligned}
$$

$$
\left(\begin{array}{cccc}
H_{1}-i \hbar \partial_{t} & N_{12} & N_{13} & \cdots \\
N_{21} & H_{2}-i \hbar \partial_{t} & N_{23} & \cdots \\
\vdots & \vdots & \vdots & \cdots
\end{array}\right)\left(\begin{array}{c}
h_{1} \\
h_{2} \\
h_{3} \\
\vdots
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
0 \\
\vdots
\end{array}\right)
$$

Adiabatic approximation

$$
N_{n^{\prime} n}=0
$$

$$
\left(\begin{array}{cccc}
H_{1}-i \hbar \partial_{t} & 0 & 0 & \cdots \\
0 & H_{2}-i \hbar \partial_{t} & 0 & \cdots \\
\vdots & \vdots & \vdots & \ldots
\end{array}\right)\left(\begin{array}{c}
h_{1} \\
h_{2} \\
h_{3} \\
\vdots
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
0 \\
\vdots
\end{array}\right)
$$

$$
H_{n} h_{n}-i \hbar \partial_{t} h_{n}=0
$$

$$
T_{n u c} h_{n}+E_{n} h_{n}=i \hbar \partial_{t} h_{n}
$$

Time-dependent BO adiabatic formulation

BO molecular wave function

$$
\Psi_{n}^{B O}(\mathbf{r}, \mathbf{R}, t)=\varphi_{n}(\mathbf{r} ; \mathbf{R}) h_{n}(\mathbf{R}, t)
$$

Nuclear Schrödinger equation

$$
T_{n u c} h_{n}+E_{n} h_{n}-i \hbar \partial_{t} h_{n}=0
$$

Electronic Schrödinger equation

$$
\left(T_{\text {elec }}+V\right) \varphi_{n}=E_{n} \varphi_{n}
$$

The TD-BO wave functions have a weird time-asymmetry

$$
\varphi_{n}(\mathbf{r} ; \mathbf{R}) \times h_{n}(\mathbf{R}, t)
$$

Ehrenfest

$$
\Psi(\mathbf{R}, \mathbf{r}, t)=\varphi(\mathbf{r}, t) h(\mathbf{R}, t)
$$

Time-dependent Ehrenfest formulation

Ehrenfest molecular wave function
$\Psi(\mathbf{R}, \mathbf{r}, t)=\varphi(\mathbf{r}, t) h(\mathbf{R}, t)$
Electronic Schrödinger equation

$$
\partial_{t} \varphi=-\frac{i}{\hbar}\left\{\langle h| T_{\text {nuc }}+V|h\rangle_{\mathbf{R}}-i \hbar\left\langle h \mid \partial_{t} h\right\rangle_{\mathbf{R}}+T_{\text {elec }}\right\} \varphi
$$

Nuclear Schrödinger equation

$$
\partial_{t} h=-\frac{i}{\hbar}\left\{\langle\varphi| T_{\text {elec }}+V|\varphi\rangle_{\mathbf{r}}-i \hbar\left\langle\varphi \mid \partial_{t} \varphi\right\rangle_{\mathbf{r}}+T_{\text {nuc }}\right\} h
$$

(b)
$\mathrm{t}=0 \mathrm{fs}$

Time evolution after ionization

A note about molecular time

There's no time dependency.
A molecule is not rotating or vibrating!
Electrons are not orbiting!

$$
\begin{aligned}
& \left(T_{n u c}(\mathbf{R})+E_{n}(\mathbf{R})\right) \chi_{n j}(\mathbf{R})=\varepsilon_{n j} \chi_{n j}(\mathbf{R}) \\
& \left(T_{\text {elec }}(\mathbf{r})+V(\mathbf{r}, \mathbf{R})\right) \varphi_{n}(\mathbf{r} ; \mathbf{R})=E_{n}(\mathbf{R}) \varphi_{n}(\mathbf{r} ; \mathbf{R})
\end{aligned}
$$

An eigenstate may have a time-dependent phase

$$
\begin{aligned}
& \begin{array}{l}
|\tilde{\psi}(t)\rangle=\left|\psi_{k}\right\rangle \exp \left(\frac{-i \varepsilon_{k} t}{\hbar}\right) \\
H|\tilde{\psi}(t)\rangle=i \hbar d_{t}|\tilde{\psi}(t)\rangle \\
i \hbar d_{t}\left(\left|\psi_{k}\right\rangle \exp \left(\frac{-i \varepsilon_{k} t}{\hbar}\right)\right)=i \hbar\left|\psi_{k}\right\rangle d_{t} \exp \left(\frac{-i \varepsilon_{k} t}{\hbar}\right) \\
=-i \hbar\left|\psi_{k}\right\rangle \frac{i \varepsilon_{k}}{\hbar} \exp \left(\frac{-i \varepsilon_{k} t}{\hbar}\right)=\varepsilon_{k}\left|\psi_{k}\right\rangle \exp \left(\frac{-i \varepsilon_{k} t}{\hbar}\right) \\
H\left|\psi_{k}\right\rangle \exp \left(\frac{-i \varepsilon_{k} t}{\hbar}\right)=\varepsilon_{k}\left|\psi_{k}\right\rangle \exp \left(\frac{-i \varepsilon_{k} t}{\hbar}\right) \\
H\left|\psi_{k}\right\rangle=\varepsilon_{k}\left|\psi_{k}\right\rangle
\end{array}
\end{aligned}
$$

$$
\left(T_{n u c}(\mathbf{R})+E_{n}(\mathbf{R})\right) \chi_{n j}(\mathbf{R})=\varepsilon_{n j} \chi_{n j}(\mathbf{R})
$$

$$
\left(T_{n u c}(\mathbf{R})+E_{n}(\mathbf{R})\right) \chi_{n j}(\mathbf{R})=\varepsilon_{n j} \chi_{n j}(\mathbf{R})
$$

For a stationary state

- Momentum $=$ wave function steepness $[-i \hbar \nabla \psi]$
- Spin $=$ curl of the electron density * $\left[\frac{\hbar}{4} \nabla \times\left(\tilde{\psi}^{\dagger} \boldsymbol{\sigma} \tilde{\psi}\right)\right]$
- Angular momentum = wave function blobs and nodes
S
p
d f
1
$\stackrel{\square}{4}$
3

4
4
"Electronic correlation is the interaction between electrons in the electronic structure of a quantum system. The correlation energy is a measure of how much the movement of one electron is influenced by the presence of all other electrons."

- Wikipedia
"Electron correlation is the adjustment of electron motion to the instantaneous (as opposed to timeaveraged) positions of all the electrons in a molecular entity."
- IUPAC Gold Book

Which motion are they talking about?

Do orbitals exist?

$$
\varphi(\mathbf{r} ; \mathbf{R})=f\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{N} ; \mathbf{R}\right) \quad \mathbf{x}_{i}=\mathbf{r}_{i} \omega_{i}
$$

$$
\varphi(\mathbf{r} ; \mathbf{R})=A\left\{\phi_{1}\left(\mathbf{x}_{1} ; \mathbf{R}\right) \phi_{2}\left(\mathbf{x}_{2} ; \mathbf{R}\right) \ldots \phi_{N}\left(\mathbf{x}_{N} ; \mathbf{R}\right)\right\}
$$

dynamics σ polarization

contraction of p orbitals

Time becomes important again during chemical reactions or field interactions

what atoms really look like?

Quantum Chemistry

Time-independent BO adiabatic formulation
Nuclear Schrödinger equation

$$
\left(T_{n u c}(\mathbf{R})+E_{n}(\mathbf{R})\right) \chi_{n j}(\mathbf{R})=\varepsilon_{n j} \chi_{n j}(\mathbf{R})
$$

Electronic Schrödinger equation

$$
\left(T_{\text {elec }}(\mathbf{r})+V(\mathbf{r}, \mathbf{R})\right) \varphi_{n}(\mathbf{r} ; \mathbf{R})=E_{n}(\mathbf{R}) \varphi_{n}(\mathbf{r} ; \mathbf{R})
$$

BO molecular wave function

$$
\Psi_{n j}^{B O}(\mathbf{R}, \mathbf{r})=\varphi_{n}(\mathbf{r} ; \mathbf{R}) \chi_{n j}(\mathbf{R})
$$

Quantum chemistry's primary goal

Given a nuclear geometry \mathbf{R}, solve the electronic Schrödinger equation in the adiabatic approximation

$$
\left(T_{\text {elec }}(\mathbf{r})+V(\mathbf{r}, \mathbf{R})\right) \varphi_{n}(\mathbf{r} ; \mathbf{R})=E_{n}(\mathbf{R}) \varphi_{n}(\mathbf{r} ; \mathbf{R})
$$

to get electronic energies E_{n} and electronic wave function φ_{n} for state n.

Quantum chemistry's methods

Wave-function based
$\left|\varphi_{n}\right\rangle$

- Hartree-Fock
- MP
- CC
- CASSCF
- CASPT2
- Cl
- ADC
- ...

Density based

$$
\rho_{n}=\left|\varphi_{n}\right\rangle\left\langle\varphi_{n}\right|
$$

- DFT
- DFTB
- TDDFT
- TDA
- DFT-CI
- REKS
- BSE
- ...

Quantum chemistry's bottom-up approach

4. Use WF to get the final electronic WF or density

-

3. Use MOs to build electronic wave function (WF) guess

4. Use AOs to build molecular orbitals (MO) +
\square
5. Define atomic orbital (AO) basis

AOs are hydrogen-like orbitals s p d f

1. Define AO basis

Gaussian basis sets

$$
G_{n l m}(r, \theta, \psi)=N_{n} \underbrace{r^{n-1} e^{-\alpha r^{2}}}_{\text {radial part }} \underbrace{Y_{1}^{m}(\theta, \psi)}_{\text {angular part }}
$$

Example: 1s AO for hydrogen using STO-3G basis set:

$$
\phi_{1 s}(r)=\sum_{j=1}^{3} d_{j} G_{100}\left(r ; \alpha_{j}\right)
$$

j	α_{j}	d_{j}
1	0.1688	0.4
2	0.6239	0.7
3	3.425	1.3

- STO-3G
- 6-31G(d,p)
- cc-pVDZ
- SVP
- ...

2. Use AOs to build MOs

LCAO: linear combination of atomic orbitals

Given a basis of $\mathrm{AOs}\left\{\phi_{\mu}\right\}$, the $\mathrm{MOs} \psi_{\mathrm{i}}$ are written as

$$
\psi_{i}(\mathbf{r})=\sum_{\mu} c_{\mu i} \phi_{\mu}(\mathbf{r})
$$

For example

To take the electron spin into account, we define spin orbitals

$$
\eta_{i}(\mathbf{x})=\psi_{i}(\mathbf{r}) \sigma_{i}(\omega) \quad \mathbf{x}=(r, \omega)
$$

ω is spin up or down.
$\psi_{i}(\mathbf{r})$ can hold two electrons (up and down)
$\eta_{i}(\mathbf{x})$ can hold one electron (up or down)

$$
\eta_{i}(\mathbf{x})=\left(\sum_{\mu} c_{\mu i}^{\text {known }} \phi_{\mu}(\mathbf{r})\right) \sigma_{i}(\omega)
$$

3. Use MOs to build WF guess

Pauli Exclusion Principle

$$
\varphi\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \cdots, \mathbf{x}_{k}, \mathbf{x}_{l}, \cdots, \mathbf{x}_{N_{e l}}\right)=-\varphi\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \cdots, \mathbf{x}_{l}, \mathbf{x}_{k}, \cdots, \mathbf{x}_{N_{e l}}\right)
$$

Wave function guess for two electrons
Consider two electrons, one up in spin-orbital η_{a} and one down in η_{b}

First wave function guess:

$$
\varphi_{\text {guess } 1}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\eta_{a}\left(\mathbf{x}_{1}\right) \eta_{b}\left(\mathbf{x}_{2}\right)
$$

Switch the electrons:

$$
\varphi_{\text {guess } 1}\left(\mathbf{x}_{2}, \mathbf{x}_{1}\right)=\eta_{a}\left(\mathbf{x}_{2}\right) \eta_{b}\left(\mathbf{x}_{1}\right)
$$

$\varphi_{\text {guess } 1}$ does not satisfy Pauli exclusion principle:

$$
\varphi_{\text {guess } 1}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\varphi_{\text {guess } 1}\left(\mathbf{x}_{2}, \mathbf{x}_{1}\right)
$$

Wave function guess for two electrons
Consider two electrons, one up in spin-orbital η_{a} and one down in η_{b}

Second wave function guess:

$$
\varphi_{\text {guess } 2}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\frac{1}{\sqrt{2}}\left[\eta_{a}\left(\mathbf{x}_{1}\right) \eta_{b}\left(\mathbf{x}_{2}\right)-\eta_{b}\left(\mathbf{x}_{1}\right) \eta_{a}\left(\mathbf{x}_{2}\right)\right]
$$

Switch the electrons:

$$
\varphi_{\text {guess } 2}\left(\mathbf{x}_{2}, \mathbf{x}_{1}\right)=\frac{1}{\sqrt{2}}\left[\eta_{a}\left(\mathbf{x}_{2}\right) \eta_{b}\left(\mathbf{x}_{1}\right)-\eta_{b}\left(\mathbf{x}_{2}\right) \eta_{a}\left(\mathbf{x}_{1}\right)\right]
$$

$\varphi_{\text {guess2 }}$ satisfies Pauli exclusion principle:

$$
\varphi_{\text {guess } 2}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=-\varphi_{\text {guess } 2}\left(\mathbf{x}_{2}, \mathbf{x}_{1}\right)
$$

$$
\varphi_{\text {guess } 2}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\frac{1}{\sqrt{2}}\left[\eta_{a}\left(\mathbf{x}_{1}\right) \eta_{b}\left(\mathbf{x}_{2}\right)-\eta_{b}\left(\mathbf{x}_{1}\right) \eta_{a}\left(\mathbf{x}_{2}\right)\right]
$$

can be written as the determinant of the matrix

$$
\varphi_{\text {guess } 2}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\frac{1}{\sqrt{2}} \operatorname{det}\left[\begin{array}{ll}
\eta_{a}\left(\mathbf{x}_{1}\right) & \eta_{b}\left(\mathbf{x}_{1}\right) \\
\eta_{a}\left(\mathbf{x}_{2}\right) & \eta_{b}\left(\mathbf{x}_{2}\right)
\end{array}\right]
$$

Such an antisymmetric wave function guess is called a Slater determinant.

Multiple electron Slater determinant

$$
\Phi\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \cdots, \mathbf{x}_{N}\right)=(N!)^{-1 / 2} \operatorname{det}\left[\begin{array}{cccc}
\eta_{a}\left(\mathbf{x}_{1}\right) & \eta_{b}\left(\mathbf{x}_{1}\right) & \cdots & \eta_{K}\left(\mathbf{x}_{1}\right) \\
\eta_{a}\left(\mathbf{x}_{2}\right) & \eta_{b}\left(\mathbf{x}_{2}\right) & \cdots & \eta_{K}\left(\mathbf{x}_{2}\right) \\
\vdots & \vdots & \cdots & \vdots \\
\eta_{a}\left(\mathbf{x}_{N}\right) & \eta_{b}\left(\mathbf{x}_{N}\right) & \cdots & \eta_{K}\left(\mathbf{x}_{N}\right)
\end{array}\right]
$$

Factorial:

$$
\begin{aligned}
& 4!=4 \times 3 \times 2 \times 1=24 \\
& 0!=1
\end{aligned}
$$

Methods like HF and DFT use a single Slater determinant to guess the electronic wave function.

$$
\varphi_{\text {guess }}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \cdots, \mathbf{x}_{N}\right)=\Phi\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \cdots, \mathbf{x}_{N}\right)
$$

The unknowns are $c_{\mu i}$ from MOs.

Methods like CASSCF and CI use multiple Slater determinants to guess the electronic wave function.

$$
\varphi_{\text {guess }}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \cdots, \mathbf{x}_{N}\right)=\sum_{L} C_{L} \Phi_{L}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \cdots, \mathbf{x}_{N}\right)
$$

The unknowns are $c_{\mu i}$ and C_{L}.

4. Use WF guess to get final WF or density

Solving the time-independent Schrödinger equation

$$
H|\psi\rangle=E|\psi\rangle
$$

replace

$$
H \sum_{i} C_{i}\left|\phi_{i}\right\rangle=E \sum_{i} C_{i}\left|\phi_{i}\right\rangle
$$

project \& integrate

$$
\sum_{i} C_{i}\left\langle\phi_{j}\right| H\left|\phi_{i}\right\rangle=E C_{j}
$$

$\sum_{i=1}^{N} C_{i} H_{j i}=E C_{j} \quad$ where $H_{j i}=\left\langle\phi_{j}\right| H\left|\phi_{i}\right\rangle$
Suppose $N=2$:
$C_{1} H_{11}+C_{2} H_{12}=E C_{1}$
$C_{1} H_{21}+C_{2} H_{22}=E C_{2}$
Rewrite as a matrix multiplication:

$$
\left(\begin{array}{ll}
H_{11} & H_{12} \\
H_{21} & H_{22}
\end{array}\right)\binom{C_{1}}{C_{2}}=E\binom{C_{1}}{C_{2}}
$$

Rewrite as a matrix equation:

$$
\mathbf{H C}=E \mathbf{C}
$$

Most quantum chemical methods can be rewritten as
$\mathbf{H C}=E \mathbf{C}$

Toy example: $\mathbf{H}=\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]$

Looking for \mathbf{C} that satisfies $\mathbf{H C}=E \mathbf{C}$

Trial 1: $\quad \mathbf{C}_{\text {guess }}=\left[\begin{array}{l}3 \\ 1\end{array}\right]$
$\mathbf{H C}_{\text {guess }}=\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]\left[\begin{array}{l}3 \\ 1\end{array}\right]=\left[\begin{array}{l}2 \times 3+1 \times 1 \\ 1 \times 3+2 \times 1\end{array}\right]=\left[\begin{array}{l}7 \\ 5\end{array}\right] \neq E \mathbf{C}_{\text {guuss }}$
$\mathbf{C}_{\text {guess }}=\left[\begin{array}{l}3 \\ 1\end{array}\right]$ is not an eigenvector

Toy example: $\mathbf{H}=\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]$

Looking for \mathbf{C} that satisfies $\mathbf{H C}=E \mathbf{C}$

Trial 2: $\mathbf{C}_{\text {guess }}=\left[\begin{array}{c}1 \\ -1\end{array}\right]$
$\mathbf{H C}_{\text {guess }}=\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]\left[\begin{array}{l}1 \\ 1\end{array}\right]=\left[\begin{array}{l}2 \times 1+1 \times 1 \\ 1 \times 1+2 \times 1\end{array}\right]=\left[\begin{array}{l}3 \\ 3\end{array}\right]=3\left[\begin{array}{l}1 \\ 1\end{array}\right]=E \mathbf{C}_{\text {guuss }}$
$\mathbf{C}_{\text {guess }}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ is an eigenvector with eigenvalue $E=3$

In real quantum chemical problems

$$
\mathbf{H C}=E \mathbf{C}
$$

is solved in two steps:

1. Form matrix \mathbf{H}. It means to compute each integral $H_{j i}=\left\langle\phi_{j}\right| H\left|\phi_{i}\right\rangle$
2. Diagonalize \mathbf{H}-IE to get C (wave function) and E (energy).

Both steps take time because the matrices have millions of elements.

Usually, \mathbf{H} depends on E and \mathbf{C}

Such a problem is solved with a self-consistent approach (SFC):

1. Guess an approximated $E^{(0)}$ and $\mathbf{C}^{(0)}$ and solve

$$
\mathbf{H}\left(E^{(0)}, \mathbf{C}^{(0)}\right) \mathbf{C}^{(1)}=E^{(1)} \mathbf{C}^{(1)}
$$

2. Use $E^{(1)}$ and $\mathbf{C}^{(1)}$ to solve

$$
\mathbf{H}\left(E^{(1)}, \mathbf{C}^{(1)}\right) \mathbf{C}^{(2)}=E^{(2)} \mathbf{C}^{(2)}
$$

3. Continue the iterations until

$$
E^{(N)}=E^{(N-1)}
$$

Gradients and Hessian matrices

In addition to electronic energies E_{n}, wave functions $\varphi_{n^{\prime}}$ and densities $\rho_{n^{\prime}}$ quantum chemistry also aims to get:

- Electronic energy gradient \mathbf{g}_{n}
- Electronic energy Hessian \mathbf{H}_{n}

Electronic energy gradient

$$
\mathbf{g}_{n}=\nabla E_{n}=\left(\begin{array}{ccc}
\frac{\partial E_{n}}{\partial X_{1}} & \frac{\partial E_{n}}{\partial Y_{1}} & \frac{\partial E_{n}}{\partial Z_{1}} \\
\vdots & \vdots & \vdots \\
\frac{\partial E_{n}}{\partial X_{N_{a t}}} & \frac{\partial E_{n}}{\partial Y_{N_{a t}}} & \frac{\partial E_{n}}{\partial Z_{N_{a t}}}
\end{array}\right)
$$

Electronic force acting on the nuclei

$$
\mathbf{F}_{n}=-\nabla E_{n}
$$

At a geometry of minimum or maximum energy,

$$
\mathbf{F}_{n}=0
$$

Electronic energy Hessian

$$
\mathbf{H}_{n}=\nabla^{2} E_{n}=\left(\begin{array}{cccc}
\frac{\partial^{2} E_{n}}{\partial X_{1} \partial X_{1}} & \frac{\partial^{2} E_{n}}{\partial X_{1} \partial Y_{1}} & \cdots & \frac{\partial^{2} E_{n}}{\partial X_{1} \partial Z_{N_{a t}}} \\
\frac{\partial^{2} E_{n}}{\partial Y_{1} \partial X_{1}} & \frac{\partial^{2} E_{n}}{\partial Y_{1} \partial Y_{1}} & \cdots & \frac{\partial^{2} E_{n}}{\partial Y_{1} \partial Z_{N a t}} \\
\vdots & \vdots & \cdots & \vdots \\
\frac{\partial^{2} E_{n}}{\partial Z_{N_{a t}} \partial X_{1}} & \frac{\partial^{2} E_{n}}{\partial Z_{N_{a t}} \partial Y_{1}} & \cdots & \frac{\partial^{2} E_{n}}{\partial Z_{N_{a t}} \partial Z_{N_{a t}}}
\end{array}\right)
$$

Used to find the vibrational normal modes
At a geometry of minimum $\mathbf{H}_{n}>0$

To know more:
Introduction to quantum chemistry:

- Szabo; Ostlund, Modern quantum chemistry. 1989. Ch 2
- DFT: Baerends; Gritsenko; van Meer. PCCP 2013, 15, 16408
- TDDFT: Huix-Rotllant; Ferré; Barbatti, In Quantum chemistry and dynamics of excited states, 2020

The BO approximation

- Eric J Heller, The semiclassical way, 2018. Ch 16

About molecular time

- Barbatti, Aeon Magazine 2023, tinyurl.com/emptyatom

Available for download at: amubox.univ-amu.fr/s/xXAiMZrDPb9RMRX
Ask me for the password.

