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Quantum chemistry



Previously on...

Computational simulations 
of nanosystems



A classical particle 
is a particle (!)

A quantum particle 
delocalizes over space



Schrödinger Equation

i H
t


= 



 is the wave function

H is the Hamiltonian operator

ħ = 6.58210-16 eV.s is the Planck constant 



( ) ( ) ( )H E =r r r

Eigenvector

Eigenvalue

If the Hamiltonian does not depend on time



If we have more than one particle, we still write a single wave function.

However, the wave function now depends on the coordinates of all particles.

For N particles:

( )1 2, , , ,N t r r r

( )1 2, , t r r

For two particles:



( ) ( )( ) ( ) ( )nuc n nj nj njT E   + =R R R R

Nuclear Schrödinger equation

( ) ( )( ) ( ) ( ) ( ), ; ;elec n n nT V E + =r r R r R R r R

Electronic Schrödinger equation

( ) ( ) ( ), ;BO

nj n nj  =R r r R R

BO molecular wave function

Time-independent BO adiabatic formulation



R

En(R)

( ) ( )( ) ( ) ( ) ( ), ; ;elec n n nT V E + =r r R r R R r R



Riding the molecular 
roller coaster



Laying down the ground rules

1. Each valley corresponds to a different set of molecules.

2. We can only move between two valleys by rearranging the nuclear

positions. We cannot add or remove nuclei after the ride starts.

3. We can only move between valleys if the E(R) remains smaller

than the total energy.





En
er

gy

Reaction coordinate

• Nuclear quantum 
delocalization (Tunneling)

• EM fields 
(photoabsorption, 
stimulated emission)

• Diabatic mixing 
(internal conversion, 
intersystem crossing)

• Vacuum fluctuations 
(fluorescence, 
phosphorescence)



Setting the quantum patches

4. A proton can tunnel to the other valley even if the total energy is

slightly lower than the barrier maximum. We know the tunneling

probability.

5. If the track bifurcates during the reaction, the molecule can follow

either, releasing or absorbing heat, with known probabilities.

6. If the molecule is in a lower track, it can be promoted to an upper track

by absorbing light. We know the probability of populating each higher

track.

7. If the molecule is in an upper track, it can spontaneously go to the

lower track by emitting light. We know the probability of this emission

happening.



youtube.com/user/mbarbatti



BO approximation:
Time-dependent 

perspective



( ) ( ) ( ), , ,H  = R r R r R r

( ) ( ) ( ), ;n n

n

h =R r r R R

( ) ( )( ) ( ) ( ) ( ), ; ;elec n n nT V E + =r r R r R R r R

Time-independent

( ) ( ) ( ), , , , ,k

t

kH t ti =  R r R r R r

( ) ( ) ( ), , ; ,n n

n

t h t =R r r R R

Time-dependent

Electronic equation

Nuclear equation
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Time-dependent Born-Huang formulation
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0n n t nH h i h−  =

nuc n n n t nT h E h i h+ = 

Adiabatic approximation



Nuclear Schrödinger equation

( )elec n n nT V E + =

Electronic Schrödinger equation

( ) ( ) ( ), , ; ,BO

n n nt h t =r R r R R

BO molecular wave function

Time-dependent BO adiabatic formulation

0nuc n n n t nT h E h i h+ −  =



( ) ( ); ,n n th r R R

The TD-BO wave functions have a weird time-asymmetry

Ehrenfest
( ) ( ) ( ), , , ,t t h t =R r r R



 t nuc t elec

i
h T V h i h h T  = − + −  +

RR

 t elec t nuc

i
h T V i T h    = − + −  +

rr

Electronic Schrödinger equation

Nuclear Schrödinger equation

Tully. Faraday Discuss 1998, 110, 407

Time-dependent Ehrenfest formulation

Ehrenfest molecular wave function

( ) ( ) ( ), , , ,t t h t =R r r R



Vacher et al. Theor Chem Acc 2014, 133, 1505

Time evolution after ionization



A note about 
molecular time





( ) ( )( ) ( ) ( )nuc n nj nj njT E   + =R R R R

There’s no time dependency.

A molecule is not rotating or vibrating!
Electrons are not orbiting!

( ) ( )( ) ( ) ( ) ( ), ; ;elec n n nT V E + =r r R r R R r R

Barbatti, Aeon Magazine 2023, tinyurl.com/emptyatom

https://tinyurl.com/emptyatom
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An eigenstate may have a time-dependent phase 



( ) ( )( ) ( ) ( )nuc n nj nj njT E   + =R R R R



( ) ( )( ) ( ) ( )nuc n nj nj njT E   + =R R R R



For a stationary state 

• Momentum = wave function steepness

• Kinetic energy = field stress (how much the wave function differs from the mean)

• Spin = curl of the electron density *

* Ohanian. Am J Phys 1986, 54, 500
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• Angular momentum = wave function blobs and nodes



“Electronic correlation is the interaction between
electrons in the electronic structure of a quantum
system. The correlation energy is a measure of how
much the movement of one electron is influenced
by the presence of all other electrons.”

- Wikipedia

“Electron correlation is the adjustment of electron
motion to the instantaneous (as opposed to time-
averaged) positions of all the electrons in a
molecular entity.”

- IUPAC Gold Book

Which motion are they talking about?



( ) ( ) ( ) ( ) 1 1 2 2; ; ; ;N NA   =r R x R x R x R

( ) ( )1 2; , , , ;N i i if = =r R x x x R x r

Do orbitals exist?



Angeli. J Comput Chem 2009, 30, 1319

contraction of p orbitals

dynamics s polarization





Time becomes important again during chemical reactions or field interactions

Crespo-Otero et al. PCCP 2014, 16, 18877



https://youtu.be/W2Xb2GFK2yc

https://youtu.be/W2Xb2GFK2yc


Quantum Chemistry



( ) ( )( ) ( ) ( )nuc n nj nj njT E   + =R R R R

Nuclear Schrödinger equation

( ) ( )( ) ( ) ( ) ( ), ; ;elec n n nT V E + =r r R r R R r R

Electronic Schrödinger equation

( ) ( ) ( ), ;BO

nj n nj  =R r r R R

BO molecular wave function

Time-independent BO adiabatic formulation



Quantum chemistry’s primary goal

( ) ( )( ) ( ) ( ) ( ), ; ;elec n n nT V E + =r r R r R R r R

Given a nuclear geometry R, solve the electronic Schrödinger equation in 
the adiabatic approximation

to get electronic energies En and electronic wave function n for state n.



Quantum chemistry’s methods

Wave-function based Density based

n n n n  =

• Hartree-Fock
• MP
• CC
• CASSCF
• CASPT2
• CI
• ADC
• ...

• DFT
• DFTB
• TDDFT
• TDA
• DFT-CI
• REKS
• BSE
• ...



Quantum chemistry’s bottom-up approach

1. Define atomic orbital (AO) basis

2. Use AOs to build molecular orbitals (MO)

4. Use WF to get the final electronic WF or density

3. Use MOs to build electronic wave function (WF) guess



1. Define 
AO basis

AOs are hydrogen-like orbitals



Gaussian basis sets

21

radial part angular part

( , , ) ( , )n r m

nlm n lG r N r e Y   − −=

j αj dj

1 0.1688 0.4

2 0.6239 0.7

3 3.425 1.3
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r G rd 
=

=

Example: 1s AO for hydrogen using STO-3G basis set:

www.basissetexchange.org

• STO-3G
• 6-31G(d,p)
• cc-pVDZ
• SVP
• ...

http://www.basissetexchange.org/


2. Use AOs
to build 

MOs



( ) ( )i ic 


 =r r

Given a basis of AOs {}, the MOs i are written as  

LCAO: linear combination of atomic orbitals

For example



To take the electron spin into account, we define spin orbitals  

( ) ( ) ( ) ( ),i i i r  s  = =x r x

 is spin up or down.

( )i r can hold two electrons (up and down)

( )i x can hold one electron (up or down)



( ) ( ) ( )ii ic 


  s 
 

=  
 
x r

unknown

known

just for 
bookkeeping



3. Use MOs
to build WF 

guess ( ) ( )1 2 1 2, , , , , , , , , , , ,
el elNl lk k N = −x xxx xx x x x x

Pauli Exclusion Principle



Wave function guess for two electrons

First wave function guess:

( ) ( ) ( )1 1 2 1 2,guess a b  =x x x x

a

Consider two electrons, one up in spin-orbital a and one down in b

b

Switch the electrons:

( ) ( ) ( )1 2 1 2 1,guess a b  =x x x x

( ) ( )112 21 1, ,guess guess =x xx x

guess1 does not satisfy Pauli exclusion principle:



Wave function guess for two electrons

Second wave function guess:

( ) ( ) ( ) ( ) ( )2 1 2 1 2 1 2

1
,

2
guess a b b a     = − x x x x x x

a

Consider two electrons, one up in spin-orbital a and one down in b

b

Switch the electrons:

( ) ( ) ( ) ( ) ( )2 2 1 2 1 2 1

1
,

2
guess a b b a     = − x x x x x x

( ) ( )122 22 1, ,guess guess = −x xx x

guess2 satisfies Pauli exclusion principle:



( ) ( ) ( ) ( ) ( )2 1 2 1 2 1 2

1
,

2
guess a b b a     = − x x x x x x

can be written as the determinant of the matrix

( )
( ) ( )

( ) ( )
1 1

2 1 2

2 2

1
, det

2

a b

guess

a b

 


 

 
=  

 

x x
x x

x x

Such an antisymmetric wave function guess is called a Slater determinant.



Multiple electron Slater determinant

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 1 1

1/2 2 2 2

1 2, , , ! det
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a N b N K N

N
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−
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=

Factorial:



Methods like HF and DFT use a single Slater determinant to guess the 
electronic wave function.

( ) ( )1 2 1 2, , , , , ,guess N N = x x x x x x

The unknowns are ci from MOs.

Methods like CASSCF and CI use multiple Slater determinants to guess 
the electronic wave function.

( ) ( )1 2 1 2, , , , , ,guess N L L N

L

C = x x x x x x

The unknowns are ci and CL. 



4. Use WF 
guess to get 
final WF or 

density



H E =

i i

i

C =expand

i i i i

i i

H C E C = replace

i j i j

i

C H EC  =project &  
integrate

unknown

known

Solving the time-independent Schrödinger equation 



1

N

i ji j

i

C H EC
=

= ji j iH H =where

1 11 2 12 1

1 21 2 22 2

C H C H EC

C H C H EC

+ =

+ =

Suppose N = 2:

11 12 1 1

21 22 2 2

H H C C
E

H H C C

    
=    

    

Rewrite as a matrix multiplication:

E=HC C

Rewrite as a matrix equation:



E=HC C

Most quantum chemical methods can be rewritten as



Toy example:
2 1

1 2

 
=  
 

H

Trial 1:
3

1
guess

 
=  
 

C

2 1 3 2 3 1 1 7

1 2 1 1 3 2 1 5
guess guessE

 +        
= = =        +        

HC C

3

1
guess

 
=  
 

C is not an eigenvector

E=HC CLooking for C that satisfies



Toy example:
2 1

1 2

 
=  
 

H

Trial 2:
1

1
guess

 
=  − 

C

2 1 1 2 1 1 1 3 1
3

1 2 1 1 1 2 1 3 1
guess guessE

 +          
= = = = =          +          

HC C

1

1
guess

 
=  
 

C is an eigenvector with eigenvalue E = 3

E=HC CLooking for C that satisfies



E=HC C

In real quantum chemical problems

is solved in two steps:

1. Form matrix H. It means to compute each integral  
ji j iH H =

2. Diagonalize H-IE to get C (wave function) and E (energy). 

Both steps take time because the matrices have millions of elements.



( ),E E=H C C C

Usually, H depends on E and C

everything is unknown!

Such a problem is solved with a self-consistent approach (SFC):

2. Use E(1) and C(1) to solve
( ) ( )( ) ( ) ( ) ( )1 1 2 2 2

,E E=H C C C

3. Continue the iterations until
( ) ( )1N N

E E
−

=

( ) ( )( ) ( ) ( ) ( )0 0 1 1 1
,E E=H C C C

1. Guess an approximated E(0) and C(0) and solve



Gradients and Hessian matrices

In addition to electronic energies En, wave functions n, and densities n, 
quantum chemistry also aims to get:

• Electronic energy gradient gn

• Electronic energy Hessian Hn



Electronic energy gradient

1 1 1

at at at

n n n

n n

n n n

N N N

E E E

X Y Z

E

E E E

X Y Z

   
 
  

 
 =  =
 
   

    

g

Electronic force acting on the nuclei

n nE= −F

At a geometry of minimum or maximum energy,

0n =F



Electronic energy Hessian
2 2 2

1 1 1 1 1

2 2 2

2

1 1 1 1 1

2 2 2

1 1

at

at at at at

n n n

N

n n n

n n Nat

n n n

N N N N

E E E

X X X Y X Z

E E E

E Y X Y Y Y Z

E E E

Z X Z Y Z Z

   
 
     

 
   
 

=  =       
 
 
   
 
      

H

Used to find the vibrational normal modes

0n HAt a geometry of minimum



To know more:

Introduction to quantum chemistry:
• Szabo; Ostlund, Modern quantum chemistry. 1989. Ch 2
• DFT: Baerends; Gritsenko; van Meer. PCCP 2013, 15, 16408
• TDDFT: Huix-Rotllant; Ferré; Barbatti, In Quantum chemistry and dynamics of excited states, 2020

The BO approximation
• Eric J Heller, The semiclassical way, 2018. Ch 16

About molecular time
• Barbatti, Aeon Magazine 2023, tinyurl.com/emptyatom

Available for download at:
amubox.univ-amu.fr/s/xXAiMZrDPb9RMRX
Ask me for the password. 

https://tinyurl.com/emptyatom
https://amubox.univ-amu.fr/s/xXAiMZrDPb9RMRX
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