L1 - Quantum Mechanics 1

The Born-Oppenheimer approximation

Wave functions and the Schrödinger equation

$$
\begin{aligned}
& { }^{c} 0_{R N}{ }^{\prime \prime}
\end{aligned}
$$

\square youtu.be/CnM-pKH2HiO

A classical particle
is a particle (!)

A quantum particle delocalizes over space

The delocalization pattern is determined by the environment.

$$
\begin{aligned}
& \text { 浬" } \\
& { }^{c} 0_{\text {RNN }}
\end{aligned}
$$

The quantum delocalization looks like a wave.

It is mathematically described by a wave function $\Psi(\mathbf{r}, t)$.
$\Psi(\mathbf{r}, t)$ attributes a value for each point \mathbf{r} at each time t.

The value of $\Psi(\mathbf{r}, t)$ is a complex number in the form of

$$
a+i b
$$

where $i^{2}=-1$.

The classical state is determined by position and momentum at each time.

The quantum state is determined by the wave function of position and time.

Schrödinger Equation

$$
i \hbar \frac{\partial \Psi}{\partial t}=H \Psi
$$

H is the Hamiltonian operator $\hbar=6.582 \times 10^{-16} \mathrm{eV} . \mathrm{s}$ is the Planck constant

We do not directly observe $\Psi(\mathbf{r}, t)$.

Wave function
$\Psi(\mathbf{r}, t)=a+i b$
Each measure yields a classical particle.

We do not directly observe $\Psi(\mathbf{r}, t)$.

Wave function
$\Psi(\mathbf{r}, t)=a+i b$

Repeated measurements tend to

$$
|\Psi(\mathbf{r}, t)|^{2}=a^{2}+b^{2}
$$

The Born rule

$$
|\Psi(\mathbf{r}, t)|^{2} d^{3} \mathbf{r}=\Psi(\mathbf{r}, t)^{*} \Psi(\mathbf{r}, t) d^{3} \mathbf{r}
$$

This quantity is the probability of finding the particle in a volume $d^{3} \mathbf{r}$ around \mathbf{r} at time t.

The probability the particle will be somewhere is 1 .

$$
\int|\Psi(\mathbf{r}, t)|^{2} d^{3} \mathbf{r}=\int \Psi(\mathbf{r}, t)^{*} \Psi(\mathbf{r}, t) d^{3} \mathbf{r}=1
$$

Ψ^{*} is the complex conjugate of Ψ

$$
\begin{aligned}
& \Psi=a+i b \\
& \Psi^{*}=a-i b
\end{aligned}
$$

Eifyt
 FABTMCS DualliT

$+\square$
 h
 $p=-n=$
 P incmityon
 มேேール

- youtu.be/qCmtegdqOOA

The mean value of any observable A is given as

$$
\begin{aligned}
\langle A\rangle & =\int d \mathbf{r} \Psi^{*}(\mathbf{r}, t) A \Psi(\mathbf{r}, t) \\
& =\langle\Psi| A|\Psi\rangle
\end{aligned}
$$

Bra 〈bra| and ket |ket〉 symbols are Dirac's notation to simplify long integral expressions.

The mean value of the position \mathbf{r}

$$
\begin{aligned}
\langle\mathbf{r}\rangle & =\int d \mathbf{r} \Psi^{*}(\mathbf{r}, t) \mathbf{r} \Psi(\mathbf{r}, t) \\
& =\langle\Psi| \mathbf{r}|\Psi\rangle
\end{aligned}
$$

Mean value of component x

$$
\langle x\rangle=\langle\Psi| x|\Psi\rangle=\int d x d y d z \Psi^{*}(\mathbf{r}, t) x \Psi(\mathbf{r}, t)
$$

The mean value of the momentum $p_{x}=-i \hbar \frac{\partial}{\partial x}$

$$
\begin{aligned}
\left\langle p_{x}\right\rangle & =-i \hbar \int d \mathbf{r} \Psi^{*}(\mathbf{r}, t) \frac{\partial \Psi(\mathbf{r}, t)}{\partial x} \\
& =-i \hbar\langle\Psi| \frac{\partial}{\partial x}|\Psi\rangle \\
& =-i \hbar\left\langle\Psi \left\lvert\, \frac{\partial \Psi}{\partial x}\right.\right\rangle
\end{aligned}
$$

Nabla operator

$$
\nabla=\left(\begin{array}{l}
\partial_{x} \\
\partial_{y} \\
\partial_{z}
\end{array}\right) \rightarrow\langle\mathbf{p}\rangle=-i \hbar\langle\Psi \mid \nabla \Psi\rangle
$$

The mean value Hamiltonian H is the energy

$$
\begin{aligned}
\langle H\rangle & =\int d \mathbf{r} \Psi^{*}(\mathbf{r}, t) H \Psi(\mathbf{r}, t) \\
& =\langle\Psi| H|\Psi\rangle \\
& =E
\end{aligned}
$$

Suppose time-independent Hamiltonian $H(\mathbf{r})$.
We can separate \mathbf{r} and t in the wave function:

$$
\Psi(\mathbf{r}, t)=\psi(\mathbf{r}) \phi(t)
$$

Replace in the Schrödinger equation

$$
\begin{aligned}
& i \hbar \frac{\partial \Psi}{\partial t}=H(\mathbf{r}) \Psi \rightarrow i \hbar \frac{\partial \psi(\mathbf{r}) \phi(t)}{\partial t}=H(\mathbf{r}) \psi(\mathbf{r}) \phi(t) \\
& i \hbar \psi(\mathbf{r}) \frac{d \phi(t)}{d t}=H(\mathbf{r}) \psi(\mathbf{r}) \phi(t)
\end{aligned}
$$

Separate the variables:

$$
i \hbar \frac{1}{\phi(t)} \frac{d \phi(t)}{d t}=\frac{H(\mathbf{r}) \psi(\mathbf{r})}{\psi(\mathbf{r})}=E \quad\left\{\begin{array}{c}
i \hbar \frac{d \phi(t)}{d t}=E \phi(t) \\
H(\mathbf{r}) \psi(\mathbf{r})=E \psi(\mathbf{r})
\end{array}\right.
$$

The first equation

$$
i \hbar \frac{d \phi(t)}{d t}=E \phi(t)
$$

gives

$$
\phi(t)=\exp \left(-i \frac{E t}{\hbar}\right)
$$

The second equation

$$
H(\mathbf{r}) \psi(\mathbf{r})=E \psi(\mathbf{r})
$$

is called the Time-Independent Schrödinger equation.

Eigenvector

 $$
H(\mathbf{r}) \psi(\mathbf{r})=E \psi(\mathbf{r})
$$
 Eigenvalue

Energy

$$
\left.\begin{array}{l}
H(\mathbf{r}) \psi_{1}(\mathbf{r})=E_{1} \psi_{1}(\mathbf{r}) \\
H(\mathbf{r}) \psi_{2}(\mathbf{r})=E_{2} \psi_{2}(\mathbf{r}) \\
\vdots \\
H(\mathbf{r}) \psi_{N}(\mathbf{r})=E_{N} \psi_{N}(\mathbf{r})
\end{array}\right\} \quad \text { Gxound state }
$$

E_{1}

y youtu.be/PPpSIMveyEk

If H is time-independent and $\Psi(r, t=0)$ is an eigenvector of H, the system is in a stationary state.

That means that $|\Psi|^{2}$ remains constant with time.
Oscillations between real and imaginary parts occur with frequency E / \hbar.

If H is time-independent and $\Psi(r, t=0)$ is NOT an eigenvector of H, the system is not stationary.

In this case, $|\Psi|^{2}$ changes with time.

A standard procedure to solve non-stationary states is to first solve a stationary case, and use the eigenvectors to expand the timedependent Ψ.

If we have more than one particle, we still write a single wave function.
However, the wave function now depends on the coordinates of all particles.

For two particles:

$$
\Psi\left(\mathbf{r}_{1}, \mathbf{r}_{2}, t\right)
$$

For N particles:

$$
\Psi\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \cdots, \mathbf{r}_{N}, t\right)
$$

The molecular roller coaster

"The Born-Oppenheimer idea is one of those wonderful approximations that even in failure forms the basis for discussion and systematic corrections.
"Without the Born-Oppenheimer approximation as a foundation, there would be no molecular structure, solid-state crystal structure, molecular vibrations, phonons, electronic band structure, and so on.
"Why? Because it is the Born-Oppenheimer approximation that allows separation of electronic from nuclear motion. Without it, we appear to be lost in a soggy many-body 'pea soup' or plasma of electrons and nuclei, where there is seemingly no structure at all, save the kind of structure one finds in a two-component liquid."

Eric J Heller- The semiclassical way to dynamics and spectroscopy, 2018

$\Psi\left(\mathbf{R}_{A}, \mathbf{R}_{B}, \mathbf{r}_{1}, \mathbf{r}_{2}\right)$

$\mathbf{H} \Psi=\varepsilon \Psi$

$$
\begin{aligned}
& \Psi\left(\mathbf{R}_{A}, \mathbf{R}_{B}, \mathbf{r}_{1}, \mathbf{r}_{2}\right) \\
& =\chi\left(\mathbf{R}_{A}, \mathbf{R}_{B}\right) \varphi \frac{\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{R}_{A}, \mathbf{R}_{B}\right)}{\text { A:m,-e }} \text { : } \mathrm{M}_{1}+e
\end{aligned}
$$

$$
H_{e l e c} \varphi\left(\mathbf{r}_{1}, \mathbf{r}_{2} ; \mathbf{R}\right)=E \varphi\left(\mathbf{r}_{1}, \mathbf{r}_{2} ; \mathbf{R}\right)
$$

$H_{\text {elec }} \varphi\left(\mathbf{r}_{1}, \mathbf{r}_{2} ; \mathbf{R}\right)=E \varphi\left(\mathbf{r}_{1}, \mathbf{r}_{2} ; \mathbf{R}\right)$

Potential energy surface

LIGHT AND
MOLECULES

- EM fields (photoabsorption, stimulated emission)
- Diabatic mixing (internal conversion, intersystem crossing)
- Vacuum fluctuations (fluorescence, phosphorescence)

A math reminder

Electronic equation

$$
\Psi(r, R) \quad \hat{\mathrm{A}}(r, R) \Psi(r, R)=b \Psi(r, R)
$$

expand

$$
\Psi(r, R)=\sum_{n} \chi_{n}(R) \varphi_{n}(r)
$$

replace
project
integrate
group

$$
\begin{aligned}
& \hat{\mathrm{A}}(r, R) \sum_{n} \chi_{n}(R) \varphi_{n}(r)=b \sum_{n} \chi_{n}(R) \varphi_{n}(r) \\
& \chi_{m}^{*}(R) \hat{\mathrm{A}}(r, R) \sum_{n} \chi_{n}(R) \varphi_{n}(r)=\chi_{m}^{*}(R) b \sum_{n} \chi_{n}(R) \varphi_{n}(r)
\end{aligned}
$$

$$
\int d R \chi_{m}^{*}(R) \hat{\mathrm{A}}(r, R) \sum_{n} \chi_{n}(R) \varphi_{n}(r)=b \int d R \chi_{m}^{*}(R) \sum_{n} \chi_{n}(R) \varphi_{n}(r)
$$

$$
\sum_{n} \underbrace{\left[\int d R \chi_{m}^{*}(R) \hat{\mathrm{A}}(r, R) \chi_{n}(R)\right]}_{C_{n n}(r)} \varphi_{n}(r)=b \sum_{n} \underbrace{\left[\int d R \chi_{m}^{*}(R) \chi_{n}(R)\right]}_{D_{n n}} \varphi_{n}(r)
$$

$$
\sum_{n} C_{m n}(r) \varphi_{n}(r)=b \sum_{n} D_{m n} \varphi_{n}(r)
$$

Electronic equation

$$
\Psi(r, R) \quad \hat{\mathrm{A}}(r, R) \Psi(r, R)=b \Psi(r, R)
$$

expand

$$
\begin{aligned}
& \Psi(r, R)=\sum_{n} \chi_{n}(R) \varphi_{n}(r) \\
& \hat{\mathrm{A}}(r, R) \sum_{n} \chi_{n}(R) \varphi_{n}(r)=b \sum_{n} \chi_{n}(R) \varphi_{n}(r)
\end{aligned}
$$

replace
project \&
integrate

$$
\left\langle\chi_{m}(R)\right| \hat{\mathrm{A}}(r, R) \sum_{n}\left|\chi_{n}(R) \varphi_{n}(r)\right\rangle_{R}=b\left\langle\chi_{m}(R)\right| \sum_{n}\left|\chi_{n}(R) \varphi_{n}(r)\right\rangle_{R}
$$

group

$$
\sum_{n} \underbrace{\left\langle\chi_{m}(R)\right| \hat{\mathrm{A}}(r, R)\left|\chi_{n}(R)\right\rangle_{R}}_{C_{m n}(r)} \varphi_{n}(r)=b \sum_{n} \underbrace{\left\langle\chi_{m}(R) \mid \chi_{n}(R)\right\rangle_{R}}_{D_{n n}} \varphi_{n}(r)
$$

$$
\sum_{n} C_{m n}(r) \varphi_{n}(r)=b \sum_{n} D_{m n} \varphi_{n}(r)
$$

Try yourself to find the electronic equation!
For $\hat{\mathrm{A}}(r, R) \Psi(r, R)=b \Psi(r, R)$

$$
\begin{equation*}
\Psi(r, R)=\sum_{n} \chi_{n}(R) \varphi_{n}(r) \tag{1}
\end{equation*}
$$

show that

$$
\sum_{n}\left\langle\chi_{m}(R)\right| \hat{\mathrm{A}}(r, R)\left|\chi_{n}(R)\right\rangle_{R} \varphi_{n}(r)=b \sum_{n}\left\langle\chi_{m}(R) \mid \chi_{n}(R)\right\rangle_{R} \varphi_{n}(r)
$$

Hint:

- Replace Eq. (2) in (1)
- Project: multiply by $\left\langle\chi_{m}(R)\right|$ at left of both sides

Nuclear equation

$$
\Psi(r, R) \quad \hat{\mathrm{A}}(r, R) \Psi(r, R)=b \Psi(r, R)
$$

expand

$$
\Psi(r, R)=\sum_{n} \chi_{n}(R) \varphi_{n}(r)
$$

replace
project \& integrate
group

$$
\begin{aligned}
& \hat{\mathrm{A}}(r, R) \sum_{n} \chi_{n}(R) \varphi_{n}(r)=b \sum_{n} \chi_{n}(R) \varphi_{n}(r) \\
& \left\langle\varphi_{m}(r)\right| \hat{\mathrm{A}}(r, R) \sum_{n}\left|\chi_{n}(R) \varphi_{n}(r)\right\rangle_{r}=b\left\langle\varphi_{m}(r)\right| \sum_{n}\left|\chi_{n}(R) \varphi_{n}(r)\right\rangle_{r} \\
& \sum_{n} \underbrace{\left\langle\varphi_{m}(r)\right| \hat{\mathrm{A}}(r, R)\left|\varphi_{n}(r)\right\rangle_{r}}_{E_{m n}(R)} \chi_{n}(R)=b \sum_{n} \underbrace{\left\langle\varphi_{m}(r) \mid \varphi_{n}(r)\right\rangle_{r}}_{F_{m n}} \chi_{n}(R) \\
& \sum_{n} E_{m n}(R) \chi_{n}(R)=b \sum_{n} F_{m n} \chi_{n}(R)
\end{aligned}
$$

$$
\begin{aligned}
& \hat{\mathrm{A}}(r, R) \Psi(r, R)=b \Psi(r, R) \\
& \sum_{n} C_{n n}(r) \varphi_{n}(r)=b \sum_{n} D_{m n} \varphi_{n}(r) \\
& \sum_{n} E_{n n}(R) \chi_{n}(R)=b \sum_{n} F_{n n} \chi_{n}(R) \\
& \Psi(r, R)=\sum_{n} \chi_{n}(R) \varphi_{n}(r) \\
& b=\langle\Psi(r, R)| \hat{\mathrm{A}}(r, R)|\Psi(r, R)\rangle_{r, R}
\end{aligned}
$$

$$
\hat{\mathrm{A}}(r, R) \Psi(r, R)=b \Psi(r, R)
$$

$$
\begin{aligned}
& \hat{\mathrm{A}}^{(0)}(r, R) \varphi(r ; R)=\varepsilon \varphi(r ; R) \\
& \sum_{n} E_{n n}(R) \chi_{n}(R)=b \sum_{n} F_{n n} \chi_{n}(R) \\
& \Psi(r, R)=\sum_{n} \chi_{n}(R) \varphi_{n}(r) \\
& b=\langle\Psi(r, R)| \hat{A}(r, R)|\Psi(r, R)\rangle_{r, R}
\end{aligned}
$$

The Born-Oppenheimer approximation

Field-free non-relativistic molecular problem
$H(\mathbf{R}, \mathbf{r}) \Psi^{k}(\mathbf{R}, \mathbf{r})=\varepsilon_{k} \Psi^{k}(\mathbf{R}, \mathbf{r})$
with

$$
H(\mathbf{R}, \mathbf{r})=T_{\text {nuc }}(\mathbf{R})+T_{\text {elec }}(\mathbf{r})+V(\mathbf{r}, \mathbf{R})
$$

Born-Huang wave function

$$
\begin{aligned}
\Psi_{k}(\mathbf{R}, \mathbf{r}) & =\sum_{n j} c_{n j}^{k} \varphi_{n}(\mathbf{r} ; \mathbf{R}) \chi_{n j}(\mathbf{R}) \\
\Psi_{k}(\mathbf{R}, \mathbf{r}) & =\sum_{n} \varphi_{n}(\mathbf{r} ; \mathbf{R})\left(\sum_{j} c_{n j}^{k} \chi_{n j}(\mathbf{R})\right) \\
& =\sum_{n} \varphi_{n}(\mathbf{r} ; \mathbf{R}) h_{n}^{k}(\mathbf{R})
\end{aligned}
$$

Solving the electronic part

$$
\Psi_{k}(\mathbf{R}, \mathbf{r})=\sum_{n} \varphi_{n}(\mathbf{r} ; \mathbf{R}) h_{n}^{k}(\mathbf{R})
$$

$$
\left(T_{\text {elec }}(\mathbf{r})+V(\mathbf{r}, \mathbf{R})\right) \varphi_{n}(\mathbf{r} ; \mathbf{R})=E_{n}(\mathbf{R}) \varphi_{n}(\mathbf{r} ; \mathbf{R})
$$

Solving the nuclear part

$$
\begin{gathered}
H(\mathbf{R}, \mathbf{r}) \Psi^{k}(\mathbf{R}, \mathbf{r})=\varepsilon_{k} \Psi^{k}(\mathbf{R}, \mathbf{r}) \\
\text { with } \\
H=T_{\text {nuc }}(\mathbf{R})+T_{\text {elec }}(\mathbf{r})+V(\mathbf{r}, \mathbf{R}) \\
\Psi^{k}(\mathbf{R}, \mathbf{r})=\sum_{n} \varphi_{n}(\mathbf{r} ; \mathbf{R}) h_{n}^{k}(\mathbf{R}) \\
\left(T_{\text {nuc }}(\mathbf{R})+T_{\text {elec }}(\mathbf{r})+V(\mathbf{r}, \mathbf{R})\right)\left(\sum_{n} \varphi_{n}(\mathbf{r} ; \mathbf{R}) h_{n}^{k}(\mathbf{R})\right)=\varepsilon_{k}\left(\sum_{n} \varphi_{n}(\mathbf{r} ; \mathbf{R}) h_{n}^{k}(\mathbf{R})\right)
\end{gathered}
$$

$$
\left(T_{\text {nuc }}(\mathbf{R})+T_{\text {elec }}(\mathbf{r})+V(\mathbf{r}, \mathbf{R})\right)\left(\sum_{n} \varphi_{n}(\mathbf{r} ; \mathbf{R}) h_{n}^{k}(\mathbf{R})\right)=\varepsilon_{k}\left(\sum_{n} \varphi_{n}(\mathbf{r} ; \mathbf{R}) h_{n}^{k}(\mathbf{R})\right)
$$

Working on the left-side term

$$
\frac{1}{\mathbf{M}} f(\mathbf{R}) \rightarrow \sum_{\alpha} \frac{1}{M_{\alpha}} f\left(\mathbf{R}_{\alpha}\right)
$$

$$
-\frac{\hbar^{2}}{2 \mathbf{M}} \nabla_{\mathbf{R}}^{2}\left(\sum_{n} \varphi_{n}(\mathbf{r} ; \mathbf{R}) h_{n}^{k}(\mathbf{R})\right)+\sum_{n} E_{n} \varphi_{n} h_{n}^{k}=\varepsilon_{k}\left(\sum_{n} \varphi_{n} h_{n}^{k}\right)
$$

Expanding the blue term

$$
\begin{aligned}
& -\frac{\hbar^{2}}{2 \mathbf{M}} \nabla_{\mathbf{R}}^{2}\left(\sum_{n} \varphi_{n} h_{n}^{k}\right)= \\
& -\frac{\hbar^{2}}{2 \mathbf{M}} \sum_{n}\left[\left(\nabla_{\mathbf{R}}^{2} \varphi_{n}\right) h_{n}^{k}+2 \nabla_{\mathbf{R}} \varphi_{n} \cdot \nabla_{\mathbf{R}} h_{n}^{k}+\varphi_{n} \nabla_{\mathbf{R}}^{2} h_{n}^{k}\right]
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{\hbar^{2}}{2 \mathbf{M}} \sum_{n}\left[\left(\nabla_{\mathbf{R}}^{2} \varphi_{n}\right) h_{n}^{k}+2 \nabla_{\mathbf{R}} \varphi_{n} \cdot \nabla_{\mathbf{R}} h_{n}^{k}+\varphi_{n} \nabla_{\mathbf{R}}^{2} h_{n}^{k}\right] \\
& +\sum_{n} E_{n} \varphi_{n} h_{n}^{k}=\varepsilon_{k}\left(\sum_{n} \varphi_{n} h_{n}^{k}\right)
\end{aligned}
$$

Projecting on n^{\prime}

$$
\begin{aligned}
& -\left\langle\varphi_{n^{\prime}} \left\lvert\, \frac{\hbar^{2}}{2 \mathbf{M}} \sum_{n}\left[\left(\nabla_{\mathbf{R}}^{2} \varphi_{n}\right) h_{n}^{k}+2 \nabla_{\mathbf{R}} \varphi_{n} \cdot \nabla_{\mathbf{R}} h_{n}^{k}+\varphi_{n} \nabla_{\mathbf{R}}^{2} h_{n}^{k}\right]\right.\right\rangle_{\mathbf{r}} \\
& +\left\langle\varphi_{n^{\prime}} \mid \sum_{n} E_{n} \varphi_{n} h_{n}^{k}\right\rangle_{\mathbf{r}}=\left\langle\varphi_{n^{\prime}} \mid \varepsilon_{k}\left(\sum_{n} \varphi_{n} h_{n}^{k}\right)\right\rangle_{\mathbf{r}}
\end{aligned}
$$

$$
\begin{aligned}
& -\left\langle\varphi_{n^{\prime}} \left\lvert\, \frac{\hbar^{2}}{2 \mathbf{M}} \sum_{n}\left[\left(\nabla_{\mathbf{R}}^{2} \varphi_{n}\right) h_{n}^{k}+2 \nabla_{\mathbf{R}} \varphi_{n} \cdot \nabla_{\mathbf{R}} h_{n}^{k}+\varphi_{n} \nabla_{\mathbf{R}}^{2} h_{n}^{k}\right]\right.\right\rangle_{\mathbf{r}} \\
& +\left\langle\varphi_{n^{\prime}} \mid \sum_{n} E_{n} \varphi_{n} h_{n}^{k}\right\rangle_{\mathbf{r}}=\left\langle\varphi_{n^{\prime}} \mid \varepsilon_{k}\left(\sum_{n} \varphi_{n} h_{n}^{k}\right)\right\rangle_{\mathbf{r}}
\end{aligned}
$$

Using orthonormality

$$
\begin{aligned}
& \left\langle\varphi_{n^{\prime}} \mid \varphi_{n}\right\rangle_{\mathbf{r}}=\delta_{n n^{\prime}} \\
& -\frac{\hbar^{2}}{2 \mathbf{M}} \sum_{n}\left[\left\langle\varphi_{n^{\prime}} \mid \nabla_{\mathbf{R}}^{2} \varphi_{n}\right\rangle_{\mathbf{r}} h_{n}^{k}+2\left\langle\varphi_{n^{\prime}} \mid \nabla_{\mathbf{R}} \varphi_{n}\right\rangle_{\mathbf{r}} \cdot \nabla_{\mathbf{R}} h_{n}^{k}\right] \\
& -\frac{\hbar^{2}}{2 \mathbf{M}} \nabla_{\mathbf{R}}^{2} h_{n^{\prime}}^{k}+E_{n^{\prime}} h_{n^{\prime}}^{k}=\varepsilon_{k} h_{n^{\prime}}^{k}
\end{aligned}
$$

Time-independent Born-Huang formulation

$$
\begin{aligned}
& H_{n^{\prime}} h_{n^{\prime}}^{k}-\varepsilon_{k} h_{n^{\prime}}^{k}+\sum_{n} N_{n^{\prime} n}=0 \\
& H_{n^{\prime}}=-\frac{\hbar^{2}}{2 \mathbf{M}} \nabla_{\mathbf{R}}^{2}+E_{n^{\prime}} \\
& N_{n^{\prime} n}=-\frac{\hbar^{2}}{2 \mathbf{M}}\left[\left\langle\varphi_{n^{\prime}} \mid \nabla_{\mathbf{R}}^{2} \varphi_{n}\right\rangle_{\mathbf{r}} h_{n}^{k}+2\left\langle\varphi_{n^{\prime}} \mid \nabla_{\mathbf{R}} \varphi_{n}\right\rangle_{\mathbf{r}} \cdot \nabla_{\mathbf{R}} h_{n}^{k}\right] \\
& \left(\begin{array}{cccc}
H_{1}(\mathbf{R})-\varepsilon_{k} & N_{12}(\mathbf{R}) & N_{13}(\mathbf{R}) & \ldots \\
N_{21}(\mathbf{R}) & H_{2}(\mathbf{R})-\varepsilon_{k} & N_{23}(\mathbf{R}) & \ldots \\
\vdots & \vdots & \vdots & \ldots
\end{array}\right)\left(\begin{array}{c}
h_{1}^{k}(\mathbf{R}) \\
h_{2}^{k}(\mathbf{R}) \\
h_{3}^{k}(\mathbf{R}) \\
\vdots
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
0 \\
\vdots
\end{array}\right)
\end{aligned}
$$

Adiabatic approximation

$$
N_{n^{\prime} n}(\mathbf{R})=0
$$

$$
\begin{aligned}
& \left(\begin{array}{cccc}
H_{1}(\mathbf{R})-\varepsilon_{k} & 0 & 0 & \cdots \\
0 & H_{2}(\mathbf{R})-\varepsilon_{k} & 0 & \cdots \\
\vdots & \vdots & \vdots & \ldots
\end{array}\right)\left(\begin{array}{c}
h_{1}^{k}(\mathbf{R}) \\
h_{2}^{k}(\mathbf{R}) \\
h_{3}^{k}(\mathbf{R}) \\
\vdots
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
0 \\
\vdots
\end{array}\right) \\
& H_{n}(\mathbf{R}) h_{n}^{k}(\mathbf{R})-\varepsilon_{k} h_{n}^{k}(\mathbf{R})=0 \\
& -\frac{\hbar^{2}}{2 \mathbf{M}} \nabla_{\mathbf{R}}^{2} h_{n}^{k}(\mathbf{R})+E_{n}(\mathbf{R}) h_{n}^{k}(\mathbf{R})=\varepsilon_{k} h_{n}^{k}(\mathbf{R})
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{\hbar^{2}}{2 \mathbf{M}} \nabla_{\mathbf{R}}^{2} h_{n}^{k}(\mathbf{R})+E_{n}(\mathbf{R}) h_{n}^{k}(\mathbf{R})=\varepsilon_{k} h_{n}^{k}(\mathbf{R}) \\
& h_{n}^{k}(\mathbf{R})=\sum_{j} c_{n j}^{k} \chi_{n j}(\mathbf{R})
\end{aligned}
$$

Returning to χ

$$
\begin{aligned}
& -\frac{\hbar^{2}}{2 \mathbf{M}} \nabla_{\mathbf{R}}^{2}\left(\sum_{j} c_{n j}^{k} \chi_{n j}(\mathbf{R})\right)+E_{n}(\mathbf{R})\left(\sum_{j} c_{n j}^{k} \chi_{n j}(\mathbf{R})\right)=\varepsilon_{k}\left(\sum_{j} c_{n j}^{k} \chi_{n j}(\mathbf{R})\right) \\
& -\frac{\hbar^{2}}{2 \mathbf{M}} \nabla_{\mathbf{R}}^{2} c_{n j}^{k} \chi_{n j}(\mathbf{R})+E_{n}(\mathbf{R}) c_{n j}^{k} \chi_{n j}(\mathbf{R})=\varepsilon_{k} c_{n j}^{k} \chi_{n j}(\mathbf{R}) \\
& -\frac{\hbar^{2}}{2 \mathbf{M}} \nabla_{\mathbf{R}}^{2} \chi_{n j}(\mathbf{R})+E_{n}(\mathbf{R}) \chi_{n j}(\mathbf{R})=\varepsilon_{n j} \chi_{n j}(\mathbf{R})
\end{aligned}
$$

Time-independent BO adiabatic formulation
Nuclear Schrödinger equation

$$
\left(T_{n u c}(\mathbf{R})+E_{n}(\mathbf{R})\right) \chi_{n j}(\mathbf{R})=\varepsilon_{n j} \chi_{n j}(\mathbf{R})
$$

Electronic Schrödinger equation

$$
\left(T_{\text {elec }}(\mathbf{r})+V(\mathbf{r}, \mathbf{R})\right) \varphi_{n}(\mathbf{r} ; \mathbf{R})=E_{n}(\mathbf{R}) \varphi_{n}(\mathbf{r} ; \mathbf{R})
$$

BO molecular wave function

$$
\Psi_{n j}^{B O}(\mathbf{R}, \mathbf{r})=\varphi_{n}(\mathbf{r} ; \mathbf{R}) \chi_{n j}(\mathbf{R})
$$

To know more:

Wave functions and the Schrödinger equation

- McQuarrie; Simon, Physical chemistry. 1997. Ch 3

BO approximation
A math reminder:

- Szabo; Ostlund, Modern quantum chemistry. 1989. Ch 1

The BO approximation

- Eric J Heller, The semiclassical way, 2018. Ch 16

Available for download at: amubox.univ-amu.fr/s/xXAiMZrDPb9RMRX The password will be given in class.

