
Vol.:(0123456789)

Topics in Current Chemistry          (2021) 379:27 
https://doi.org/10.1007/s41061-021-00339-5

1 3

REVIEW

MLatom 2: An Integrative Platform for Atomistic Machine 
Learning

Pavlo O. Dral1,2  · Fuchun Ge2  · Bao‑Xin Xue1,2  · Yi‑Fan Hou1,2  · 
Max Pinheiro Jr3  · Jianxing Huang1,2  · Mario Barbatti3 

Received: 22 February 2021 / Accepted: 7 May 2021 
© The Author(s) 2021

Abstract
Atomistic machine learning (AML) simulations are used in chemistry at an ever-
increasing pace. A large number of AML models has been developed, but their 
implementations are scattered among different packages, each with its own conven-
tions for input and output. Thus, here we give an overview of our MLatom 2 soft-
ware package, which provides an integrative platform for a wide variety of AML 
simulations by implementing from scratch and interfacing existing software for a 
range of state-of-the-art models. These include kernel method-based model types 
such as KREG (native implementation), sGDML, and GAP-SOAP as well as neural-
network-based model types such as ANI, DeepPot-SE, and PhysNet. The theoreti-
cal foundations behind these methods are overviewed too. The modular structure of 
MLatom allows for easy extension to more AML model types. MLatom 2 also has 
many other capabilities useful for AML simulations, such as the support of custom 
descriptors, farthest-point and structure-based sampling, hyperparameter optimiza-
tion, model evaluation, and automatic learning curve generation. It can also be used 
for such multi-step tasks as Δ-learning, self-correction approaches, and absorption 
spectrum simulation within the machine-learning nuclear-ensemble approach. Sev-
eral of these MLatom 2 capabilities are showcased in application examples.

Keywords Machine learning · Quantum chemistry · Kernel ridge regression · Neural 
networks · Gaussian process regression

This article is part of the Topical Collection “New Horizon in Computational Chemistry Software” 
edited by Michael Filatov, Cheol. H. Choi and Massimo Olivucci.

 * Pavlo O. Dral 
 dral@xmu.edu.cn

1 State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key 
Laboratory of Theoretical and Computational Chemistry, Xiamen 361005, China

2 Department of Chemistry, and College of Chemistry and Chemical Engineering, Xiamen 
University, Xiamen 361005, China

3 Aix Marseille University, CNRS, ICR, Marseille, France

http://orcid.org/0000-0002-2975-9876
http://orcid.org/0000-0002-0112-5193
http://orcid.org/0000-0003-1803-3786
http://orcid.org/0000-0001-9188-5323
http://orcid.org/0000-0002-5120-4172
http://orcid.org/0000-0001-6363-5562
http://orcid.org/0000-0001-9336-6607
http://crossmark.crossref.org/dialog/?doi=10.1007/s41061-021-00339-5&domain=pdf


 Topics in Current Chemistry          (2021) 379:27 

1 3

   27  Page 2 of 41

1 Introduction

Machine learning (ML) has taken computational chemistry by storm [1–4]. It is 
often applied to find a relationship between given molecular geometry and quan-
tum chemical (QC) properties. A particularly useful application of such atomistic 
ML (AML) models is mapping molecular potential energy surfaces (PESs) [5–8]. 
Creating AML models is, however, a complicated task and requires domain 
knowledge. Thus, much effort has been put into developing a mathematical foun-
dation and writing specialized software for such simulations.

One of us (POD) started to develop the MLatom program package [9, 10] for 
atomistic simulations with ML already in 2013 when not many such packages 
were available. At first, it was written entirely in Fortran and parallelized with 
OpenMP as a self-contained black-box program for user-friendly calculations. 
Now, this part comprises the Fortran core of MLatom called MLatomF. Later, 
MLatomF added a Python wrapper called MLatomPy implementing multi-step 
tasks such as Δ-learning [11] and self-correction [12]. We have implemented 
these and other methods developed by ourselves, such as structure-based sam-
pling [12], the KREG model [12], ML-nuclear ensemble approach (ML-NEA) for 
precise absorption spectrum simulations [13], as well as selected literature meth-
ods, such as those based on the Coulomb matrix descriptor [14, 15], in MLatom 
for development purposes, tighter integration, and higher efficiency (see "Native 
Implementations"). We have used these native implementations also for develop-
ing methods for improving QC Hamiltonian [16], accelerating ML nonadiabatic 
excited-state dynamics [17], and for PES construction with spectroscopic accu-
racy by introducing a hierarchical ML (hML ) [18] approach.

In recent years, we have witnessed the rapid rise of many exciting new ML 
models [4, 5]. They are often designed for different applications ranging from 
very accurate ML PES trained on as few as a hundred molecular configurations of 
small- and medium-sized molecules [19, 20] to ML models trained on thousands 
or millions of points to be transferable to large molecules [21, 22]. Each has its 
own advantages and disadvantages. It is, therefore, highly desirable to be able to 
test different models before applying them to the problem at hand. This is, how-
ever, a formidable task because these models are scattered in many different soft-
ware packages. Each has its own conventions for input and output.

We face the same problem in our research: when we want to test some prom-
ising ML model, there is often a high entry barrier for learning how to use the 
corresponding package. Sometimes the documentation is very poor, and only 
interaction with experienced users or developers enabled us to use some pack-
ages. Often, some critical functionality, such as hyperparameter optimization, is 
missing.

Thus, as a pragmatic solution, we have provided the community with an inte-
grated platform based on MLatom that interfaces the selection of popular third-
party software packages via MLatomPy written in Python 3.6 + [23, 24]. This 
platform is released as MLatom 2 with all Python interfaces available as open-
source, free software for non-commercial use. Importantly, the same input and 



1 3

Topics in Current Chemistry          (2021) 379:27  Page 3 of 41    27 

output structure can now be used for many state-of-the-art, third-party ML mod-
els (see Interfaces). We have implemented the interfaces with sGDML [19, 25] 
(symmetrized gradient-domain ML), GAP and QUIP (providing GAP [26]-SOAP 
[27] method), TorchANI [28] (providing ANI [21] methods), DeePMD-kit [29] 
(providing the DPMD [30] and DeepPot-SE [31] methods), and PhysNet [22] 
programs. This selection of methods covers popular representatives of various 
types of methods, ranging from those based on kernel methods (KMs) to neural 
networks (NNs). Our implementation also supports hyperparameter optimization 
using Bayesian methods with Tree-structured Parzen Estimator (TPE) [32] via the 
hyperopt [33] package.

The modular structure of MLatom allows easy extension to other models in the 
future, as it requires only writing a separate independent module for converting 
MLatom input to the input of the third-party software and parsing the latter’s output. 
A similar approach is also used for interfacing various QC software packages [34]. 
This differs, however, from an alternative approach where some packages offer only 
part of an ML model, e.g., only a descriptor of a molecule to be used as an input for 
ML, as in DScribe [35].

In the following, we provide an overview of MLatom 2 capabilities, and details 
of native implementations and interfaces. We also demonstrate the application of 
MLatom 2 to several typical AML simulation tasks (hyperparameter optimization 
and generation of learning curves), Δ-learning and structure-based sampling, and 
calculation of absorption spectra.

2  Overview

The philosophy behind MLatom is to provide the community with a black-box-like 
program that allows a variety of calculation tasks required for ML atomistic simula-
tions to be performed (Fig. 1). The program provides only with user-friendly and 
intuitive input, and no scripting is required. Under the hood, MLatom is built of 
modules designed to be independent of each other as much as possible to the extent 
that many modules can be used as stand-alone programs entirely independent from 
the main program. As needed, the modules are combined to create a seamless work-
flow eliminating step-by-step manual calculations.

The calculation tasks in MLatom are ML tasks and data set tasks. ML tasks are 
calculations involving training and using ML models. Our implementation includes 
a wide range of such tasks from basic to multi-step procedures: using an existing 
ML model from a file, creating an ML model and saving it to a file for later use, 
estimating ML model accuracy (model evaluation to determine the generalization 
error), Δ-learning [11], self-correction [12], learning curve and nuclear-ensemble 
spectrum generation [13]. Data set tasks perform all the operations necessary for 
ML simulations, such as converting geometries given in XYZ format to the input 
vector x for ML, splitting the data set into the required subsets (e.g., training, valida-
tion, and test), sampling points into these subsets, and performing statistical analysis 
of ML estimated values (e.g., error concerning reference values). These tasks can be 
performed either independently from each other, e.g., creating an ML model from 



 Topics in Current Chemistry          (2021) 379:27 

1 3

   27  Page 4 of 41

available input vectors x or combined, e.g., by first converting XYZ coordinates 
to x and then creating an ML model. The user just needs to modify several input 
lines to perform simulations using the first or second option. In the following, we 
describe each of these tasks and define the most important concepts in ML atomistic 
simulations.

2.1  ML Tasks

Currently, MLatom supports only supervised learning, which boils down to find-
ing and using an approximating function f̂ (�;�;�) that establishes a relationship 
between the reference values y and input vectors x in the training set based on sta-
tistically motivated assumptions [36] rather than on purely physical modelling. The 
approximating function typically has a large number of parameters p and so-called 
hyperparameters h.

2.1.1  Using ML Models

Using an existing ML model is conceptually simple as it requires information 
about the mathematical form of the approximating function and (hyper)parameters. 
It includes knowing how to transform a molecular geometry into an input vector 
x. One should pay attention, however, to many technical issues, such as ensuring 
consistent conventions for storing and retrieving this information from the file for 
long-term re-usability and reproducibility of scientific simulations. Another tech-
nical issue is related to performance and accuracy, as the information to be stored 
can be quite sizable, which can quickly lead to storage and input/output bottlenecks. 
MLatom saves ML model parameters and other information in a binary format file 

Fig. 1  Overview of tasks performed by MLatom



1 3

Topics in Current Chemistry          (2021) 379:27  Page 5 of 41    27 

with a fixed structure for the core ML models and uses native formats of interfaced 
third-party software without converting them.

In atomistic simulations, we are also often interested in derivatives of proper-
ties. For example, in molecular dynamics simulations, we need to know derivatives 
of energy with respect to atomic coordinates (energy gradients =  − forces). Thus, 
MLatom can estimate both property values and partial derivatives with respect to 
elements of the input vector or atomic XYZ coordinates.

2.1.2  Creating ML Models

Creating an ML model is already a much more complicated task as one needs to find 
the model (hyper)parameters in the right way (Fig. 2). This means that one needs to 
search for optimal values in the parameter space, leading to as low a generalization 
error as possible [36]. This is not the same as fitting parameters (training) that would 
give as low an error in the training set as possible. Modern ML methods can easily and 
exactly reproduce (an extreme case of overfitting) the reference values in the training 
set [2]. Thus, the standard practice is to set aside a validation set to ensure that training 
on the remaining data points will not lead to a large error in the validation set, i.e., to 
avoid overfitting [36]. The remaining data points are called either training or sub-train-
ing set in the literature, which adds to the confusion. While both conventions are valid, 
we prefer to call them sub-training points both here and in MLatom. All data points that 
are used in creating the ML model we call the training set. This set includes the sub-
training and the validation sets in our nomenclature. This convention allows for a fairer 
and more straightforward comparison of ML models trained on the same number of 
training points as the validation set, which is used indirectly in training, to be accounted 

Fig. 2  Creating a machine learning (ML) model with MLatom can involve automatic model selection 
(hyperparameter tuning) using different types of the training set split into sub-training and validation sets 
and different sampling procedures



 Topics in Current Chemistry          (2021) 379:27 

1 3

   27  Page 6 of 41

for. For example, if the model is trained on 1000 points, but used another 1000 points 
for validation, then the reference data is needed for all 2000 points, and such a model 
cannot be compared to another model trained on only 1000 points without using such a 
validation set.

When additional information such as derivatives of properties is available, it can be 
included into the training set too. It is common to train ML models for PESs simulta-
neously on energies and gradients (or only gradients), which is known to improve the 
quality of ML PESs significantly compared to fitting only on energies [7, 37, 38]. NNs 
simply fit parameters to the reference properties and their derivatives [38], while KMs 
can include the derivative information into their model explicitly [7, 37].

Many knobs exist and can be tuned in the process of finding suitable parameters for 
an ML model. One such knob concerns the ML model itself, and another deals with 
the splitting into sub-training and validation sets. As with the first type, while we do 
not need to touch the model parameters as this is the machine’s task, we can influence 
the model by changing its hyperparameters manually [36, 39]. As a side note, the dif-
ference between parameters and hyperparameters is somewhat fussy as the latter can be 
found by a machine too. Some hyperparameters also enter the ML model, while others 
do not. The external hyperparameters that do not enter the ML model are clearly differ-
ent from parameters, but influence the training process, e.g., the regularization hyper-
parameter in KRR [36].

In any case, (hyper)parameters can be fitted to attempt to reduce the generalization 
error of the ML model by minimizing the error in the validation set (Fig. 2). For so-
called parametric models such as NNs, whose approximating function does not explic-
itly depend on the training points, finding (hyper)parameters reducing the validation 
error is usually the end of the story. However, nonparametric models such as kernel 
ridge regression (KRR) and Gaussian process regression (GPR) depend explicitly on 
the training points. In their case, not using the validation set for training the final ML 
model would lose valuable additional information available to the model and reduce its 
accuracy. Thus, after hyperparameters minimizing error in the validation set for models 
trained on the sub-training set are found (a procedure also known as model selection), 
MLatom uses them to train the final model on the whole training set.

During hyperparameter optimization in MLatom, by default, the root-mean-squared 
error (RMSE) is minimized, but the minimization of another type of error can be 
requested for native implementations. Alternatively, other defaults can be used by inter-
faces if they have their own hyperparameter optimization capabilities. When the ML 
model is trained on several different properties, the error (loss, L) should reflect the 
error for each of these properties. For example, for models trained on both property 
values and their derivatives, e.g., energies and energy gradients, the error in MLatom 
can be calculated as the sum of error for values (Lval) and weighted error for gradients 
in XYZ coordinates (Lgrxyz) as typically done in the literature [37]:

Although this approach gives the user additional flexibility, it has a drawback in 
that one has to choose an arbitrary parameter wgrxyz . To eliminate this parameter, we 

(1)L = Lval + wgrxyzLgrxyz



1 3

Topics in Current Chemistry          (2021) 379:27  Page 7 of 41    27 

introduce in MLatom the geometric mean of errors of different properties, which is 
used by default:

The final model’s accuracy also depends on how the training set is split into 
sub-training and validation sets; this topic is overviewed below in "Splitting and 
Sampling".

2.1.3  Estimating Accuracy of ML Models

MLatom also provides the means to estimate the accuracy (generalization error) of 
the ML model (Fig. 3). Since the validation set has already been used to create the 
ML model, it is good to use another independent test set to assess the model’s per-
formance [36]. The entire data set can be split into training and test sets, and points 
can be sampled into these subsets using procedures similar to those used for hyper-
parameter tuning (model selection; see "Splitting and Sampling"). Naturally, hyper-
parameter tuning and model evaluation can be combined in a single calculation task 
with MLatom. 

2.1.4  Multi‑step Tasks

The tasks above can be considered as basic. We now turn to describe multi-step 
tasks built upon these basic tasks. One such task is a Δ-learning task that combines 
predictions at the low-level QC method with ML corrections to make estimations 
approaching high-level QC accuracy [11]. Another is a self-correction task that 
combines several layers of ML models, with each layer correcting the previous lay-
er’s residual errors, which is useful for KRR models created with a focus on some 
region of the molecular PES [12]. Other multi-step tasks are learning curve gen-
eration and ML spectrum simulations [13], covered in the next two sub-sections in 
more detail.

(2)L =
√

LvalLgrxyz

Fig. 3  Estimating the accuracy of the ML model



 Topics in Current Chemistry          (2021) 379:27 

1 3

   27  Page 8 of 41

2.1.5  Learning Curves

Here, the concept of learning curves is used to investigate how ML generalization 
error depends on training set size. The relationship between ML error ε and train-
ing set size typically follows the power-law decay [40]:

where εa is the asymptotic error in the limit of the infinitely large training set, a 
is a nonnegative amplitude, and b is the positive exponent telling us how fast the 
ML improves by training with more data. These three parameters define the learning 
curve, giving a more complete characterization of the performance of a given ML 
model type than a single generalization error estimated for one training set size.

Since the errors drop that fast, the learning curves are often plotted on a 
log–log scale. In this case, particularly for not too large training sets and small 
asymptotic errors, a linear curve is often observed [37]:

A learning curve cannot be drawn without the accuracy-estimating step (see 
"Estimating Accuracy of ML Models") being taken multiple times. Thus, we pro-
vide a dedicated task to automate this procedure (Fig. 4) in MLatom 2.

In the learning curve task, the accuracy of each training set size requested is 
examined in multiple repeats, where different training points are sampled. Test-
ing with repeats helps to reduce the bias introduced by a specific combination of 
training and test sets, investigates the statistical variance, and reflects the robust-
ness of an ML model. The results (RMSEs, wall-clock training and prediction 
times) from each test are recorded in the .csv database file.

(3)� = �a +
a

Nb
tr

(4)log(�) ≈ log(a) − blogNtr

Fig. 4  Flowchart for the learning curve task



1 3

Topics in Current Chemistry          (2021) 379:27  Page 9 of 41    27 

2.1.6  ML Nuclear Ensemble Spectra

Electronic spectrum simulation is yet another multi-step task that uses the ML-
nuclear ensemble approach (ML-NEA) to automatically calculate quantities 
like absorption cross sections from as few QC calculations as possible [13]. This 
approach accelerates the traditional NEA, which usually requires thousands of 
points in a nuclear ensemble to generate a statistically converged spectrum [41]. 
Most nuclear ensemble points are relatively similar, making them suitable for using 
ML for efficient interpolation and replacing most QC calculations. Figure 5 shows 
this approach and its implementation in MLatom schematically.

The calculations require only an initial geometry, Gaussian 16 [42] input files for 
optimization and normal-mode calculations as well as for calculation of excited-state  
properties (excitation energies and oscillator strengths) with the QC method of 
choice. The user can also provide available pre-calculated data, such as output files 
with normal-mode calculations or nuclear ensemble geometries. Existing reference 
QC data can also be provided. MLatom has an interface to Gaussian 16, which 
automatically invokes and parses the QC calculations’ output to get the equilibrium 
geometry and frequencies. Then, it passes the required data to the interface to  
Newton-X [43, 44] to generate a nuclear ensemble of 50k conformations sampled 
from a harmonic-oscillator Wigner distribution of the nuclear coordinates [45].

QC properties for training ML models are calculated iteratively. The num-
ber of training points is increased at each iteration to train 2Nfs models for excita-
tion energies (ΔE0n) and oscillator strengths (f0n) of transitions from ground-state 
to each excited state n. Then, we evaluate the convergence of ML predictions. We 

Fig. 5  Left Schematic representation of the machine learning–nuclear ensemble approach (ML-NEA). 
Right Implementation of ML-NEA for calculating absorption spectra. Blue quantum chemical (QC) data, 
orange ML



 Topics in Current Chemistry          (2021) 379:27 

1 3

   27  Page 10 of 41

first calculate the geometric mean of the RMSE in the validation sets ( RMSEgeom ) 
for all ML models, then take the relative change to the previous step (which had 
Nbatch = 50 fewer training points) to get the relative RMSE (rRMSE) as the conver-
gence criterion (we consider it converged when rRMSE < 0.1):

If the criterion is satisfied, we use current trained ML models to make predictions 
for the remaining nuclear ensemble points, substitute any negative ML oscillator 
strengths with zeros, and then calculate the absorption spectrum with the following 
equation [41]:

where σ is the absorption cross section, m and e are the electron mass and charge, 
ℏ is the reduced Planck constant, c is the speed of light, �0 is the vacuum permit-
tivity, Np is the number of ensemble points (50k by default), and � = 0.01 eV is the 
broadening factor [13]. This summation can become quite computationally intensive 
for a large number of ensemble points; thus, we implemented it in C ++ . Currently, 
only absorption cross sections are available, but the code can be trivially adapted for 
other electronic spectrum types, like steady-state fluorescence.

2.2  Data Set Tasks

The quality of ML models depends strongly on the descriptor, i.e., the chosen trans-
formation of the molecular structure into the ML input vector x. While they are part 
of any ML model, MLatom currently only allows converting data sets with XYZ 
coordinates to the descriptors available in its native implementations (see "Native 
Implementations"). Other data set operations are discussed in the sub-sections 
below.

2.2.1  Splitting and Sampling

As we have seen, for tasks such as creating and estimating the accuracy of the ML 
model, the data set can be split into sub-sets: sub-training, validation, training, and 
test sets [36]. Data points can also be assigned to these sub-sets in different ways.

The simplest approach is to split the sets into sub-sets just once and sample the 
points randomly [10, 36]. When a data set to be explored with ML is known in 
advance, farthest-point (FPS) and structure-based sampling (SBS) [12] is possible 

(5)RMSEgeom(N) =
2Nfs

√∏Nfs

i=1
RMSEΔEi

(N) ∙ RMSEfi
(N)

(6)rRMSE =
RMSEgeom

(
Ntr

)
− RMSEgeom(Ntr − Nbatch)

RMSEgeom(Ntr)

(7)

𝜎(E) =
𝜋e2ℏ

2mc�0E

∑Nfs

n

1

Np

∑Np

i
ΔE0n

(
�i
)
f0n

(
�i
) 1√

2𝜋(𝛿∕2)2
exp

(
−

(
E − ΔE0n

)2
2(𝛿∕2)2

)



1 3

Topics in Current Chemistry          (2021) 379:27  Page 11 of 41    27 

and preferable to random sampling [10]. In both FPS and SBS, the data set points 
are sorted using an iterative procedure so that each next point is as far as possible 
from all the previous selected points [10]. The distance between points i and j is 
judged by the Euclidean distance ‖�i − �j‖2 between the corresponding descrip-
tors, input vectors xi and xj. In the case of SBS, the first point is the near-equlib-
rium geometry, in the case of FPS, the two most distant points are chosen as the 
first two points. Since these sampling procedures are based on an iterative greedy 
algorithm, they are implemented in MLatomF using Fortran and parallelized with 
OpenMP, which allows efficient sampling for data sets with tens of thousands of 
points [10]. SBS applied to sampling points from the PES of a single molecule 
would lead to underrepresentation of the near-equilibrium geometries as the most 
distorted geometries will be chosen. As a solution, the geometries are sorted by 
their Euclidean distance to the equilibrium geometry, sliced into regions corre-
sponding to different degrees of deformation, and, finally, SBS can be performed 
from each of these regions to obtain a balanced set [2, 10, 12]. This slicing proce-
dure is implemented in MLatomPy.

A more elaborate and slow technique for data set splitting is k-fold cross-vali-
dation, with leave-one-out cross-validation being the slowest [2, 10, 36]. In brief, 
the data set is split into k roughly equal parts, and then each of these parts is used 
for validation/testing, with the remaining parts used for training; after k-rotations 
of parts, the whole data set is effectively reused for validation/testing purposes. 
Thus, this procedure is useful for relatively small training sets.

All these techniques are available for native implementations of MLatom. 
User-defined sampling into these subsets can also be requested, and then the indi-
ces for each of the subsets should be provided to MLatom. By default, 80%:20% 
random splitting is used for native implementations, while interfaced third-party 
programs may use their default splitting and sampling for hyperparameter optimi-
zation and training (but not for model evaluation).

2.2.2  Analysis of Data

MLatom calculates several built-in statistical metrics for analyzing data, particu-
larly for comparing ML estimations to the reference values. They are overviewed 
below for the sake of completeness. For N estimated values ŷ and reference values 
y:

• Mean absolute error (MAE):

• Mean signed error (MSE, not to be confused with mean squared error):

(8)MAE =
1

N

N∑
i

||̂yi − yi
||



 Topics in Current Chemistry          (2021) 379:27 

1 3

   27  Page 12 of 41

• Root-mean-squared error (RMSE):

• Arithmetic means of estimated and reference values, respectively:

• Largest positive and negative outliers as judged by ŷ − y.
• Linear regression coefficients a and b in ŷ = a + by, their standard errors (SEs) 

with the corresponding correlation coefficient R and its squared value R2 found 
by least-squares fitting [46]:

where

(9)MSE =
1

N

N∑
i

(
ŷi − yi

)

(10)RMSE =

√√√√ 1

N

N∑
i

(
ŷi − yi

)2

(11)�ŷ =
1

N

N∑
i

ŷi

(12)�y =
1

N

N∑
i

yi

(13)b =
ssyŷ

ssyy

(14)a = �ŷ − b�y

(15)SE(a) = s

√
1

N
+

�2
y

ssyy

(16)SE(b) =
s√
ssyy

(17)R2 =
ss2

yŷ

ssyyssŷŷ

(18)ssyy = −N�2
y
+

N∑
i

y2
i



1 3

Topics in Current Chemistry          (2021) 379:27  Page 13 of 41    27 

Analogous expressions are used for derived properties, such as partial deriva-
tives; in the latter case, each partial derivative is treated as a data point, e.g. for 
RMSE of energy gradients �E

�M
 in XYZ coordinates evaluated for the PES of a single 

molecule with Nat atoms:

3  Native Implementations

This section overviews the theory and provides technical details behind the native 
implementations available in MLatom. All native ML models are currently based 
on KRR, so this approach is described first, and then we describe the details 
behind the KREG model and approaches based on the Coulomb matrix. The code 
for the KREG model, hyperparameter grid search, farthest-point, and structure-
based sampling was optimized for efficient computing, while no such efforts were 
necessarily made for other implementations.

3.1  Kernel Ridge Regression

The approximating function f̂ (�;�;�) in KRR is the sum over all training points 
Ntr:[36]

where k is the kernel function, p are model parameters that include the set of the 
regression coefficients α and h are parameters present in the kernel function.

(19)ssŷŷ = −N�2

ŷ
+

N∑
i

ŷ2
i

(20)ssyŷ = −N�y�ŷ +

N∑
i

yiŷi

(21)s =

√
ssŷŷ − ss2

yŷ
∕ssyy

N − 2

(22)RMSEgrxyz =

√√√√√ 1

N ∙ Nat ∙ 3

N∑
i=1

Nat∑
a=1

3∑
t=1

(
�Êi

�Mi,at

−
�Ei

�Mi,at

)2

(23)f̂ (�;�;�) =

Ntr∑
j=1

�jk
(
�, �j;�

)
,



 Topics in Current Chemistry          (2021) 379:27 

1 3

   27  Page 14 of 41

The regression coefficients are found by solving the linear system of equations regu-
larized by adding a small, nonnegative constant value λ to the diagonal elements [36]:

or in matrix form:

where I is the identity matrix, K is the kernel matrix that evaluates the kernel func-
tion for each pair of the training points, and y is the vector with reference values. λ 
is called the regularization parameter and is an external hyperparameter not entering 
the approximating function itself but used for model selection.

This system of equations has an analytical solution that makes it very attractive. 
The solution is, however, computationally costly for large data sets as it involves some 
kind of matrix decomposition that scales as O(Ntr

3), followed by solving the system 
of equations, which scales as O(Ntr

2). MLatom uses the very computationally effi-
cient Cholesky decomposition by default. Bunch–Kaufman and LU decomposition 
approaches are also available, which are sometimes necessary when Cholesky decom-
position fails [47]. The solution of the above system of equations also requires calcula-
tion of the kernel matrix of size Ntr

2, which can become very large and no longer fit 
in the available computer memory. Note that, by default, MLatom does not invert the 
matrix to solve the system of equations using the common expression [36]:

as it is much less computationally efficient and numerically less precise [39].
The kernel functions supported by MLatom are [2, 10, 36, 39]:

• Gaussian:

• Laplacian:

• Exponential:

(24)

⎛
⎜⎜⎜⎝

k
�
x1, x1

�
+ � ⋯ k

�
x1, xNtr

�
⋮ ⋱ ⋮

k
�
xNtr

, x
1

�
⋯ k

�
xNtr

, xNtr

�
+ �

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎝

�1
⋮

�Ntr

⎞
⎟⎟⎠
=

⎛⎜⎜⎝

y1
⋮

yNtr

⎞
⎟⎟⎠

(25)(� + ��)� = �

(26)� = (� + ��)−1�

(27)k
(
�, �j

)
= exp

(
−

1

2�2

Nx∑
s

(
xs − xj,s

)2
)

(28)k
(
�, �j

)
= exp

(
−
1

�

Nx∑
s

|||xs − xj,s
|||
)

(29)k
�
�, �j

�
= exp

⎛⎜⎜⎝
−
1

�

�
Nx�
s

�
xs − xj,s

�2
�1∕2⎞⎟⎟⎠



1 3

Topics in Current Chemistry          (2021) 379:27  Page 15 of 41    27 

• Matérn:

where Nx is the dimensionality of the input vector x, and the symbol for hyperparam-
eters h entering the kernel function was dropped. All of them have the length-scale 
parameter σ, which is an internal hyperparameter. The Matérn kernel function has an 
additional integer hyperparameter n. The choice of the kernel function depends on 
the application, and it can be considered a hyperparameter itself, although MLatom 
does not automatically make this choice. MLatom performs automatic optimization 
of the hyperparameters λ and σ on the nested logarithmic grid [10]. Alternatively, 
the hyperparameters can be optimized using a third-party hyperopt package (see 
"Interfaces" and its subsection "Hyperopt" below).

As discussed above, we are often interested in the derivatives of properties. Once 
the KRR approximating function is trained on reference values of properties, it can 
be differentiated to obtain the required derivatives with respect to the d dimension of 
the input vector x:

Thus, calculating the approximating function derivatives requires calculation 
of kernel function derivatives. The expressions for analytical first-order deriva-
tives of the kernel functions are:

• Gaussian:

• Matérn with n > 0:

where ���� − �j
���2 =

�∑Ns

x
(xs − xj,s)

2
�1∕2

 is the Euclidean distance. The exponential 
and Laplacian kernel functions, as well as the Matérn kernel function with n = 0 
are not differentiable.

Often, we need to know the derivatives in XYZ coordinates. Let us define the 
molecular XYZ coordinates as M that can be transformed into the input vector x 
via descriptor function x(M). Then, the partial derivatives in XYZ coordinates for 
atom a and dimension t can be obtained using the chain rule as:

(30)k
�
�, �j

�
= exp

⎛
⎜⎜⎝
−
1

�

�
Nx�
s

�
xs − xj,s

�2
�1∕2⎞

⎟⎟⎠

n�
k=0

(n + k)!

(2n)!

�
n

k

�⎛
⎜⎜⎝
2

�

�
Nx�
s

�
xs − xj,s

�2
�1∕2⎞

⎟⎟⎠

n−k

(31)
�f̂ (�)

�xd
=

Ntr∑
j=1

�j
�k
(
�, �j

)
�xd

.

(32)
�k
(
�, �j

)
�xd

=
1

�2

(
xj,d − xd

)
k
(
�, �j

)

(33)
�k
�
�, �j

�
�xd

= exp

�
−
‖� − �j‖2

�

� n−1�
k=0

(n + k − 1)!

(2n)!

�
n

k

�
× (n − k)

2

�2

�
2‖� − �j‖2

�

�n−k−1�
xj,d − xd

�



 Topics in Current Chemistry          (2021) 379:27 

1 3

   27  Page 16 of 41

where x(M)d are Nd elements of the input vector x depending on Mat. The expression 
for the first-order derivatives of the descriptors �x(�)d∕�Mat available in MLatom 
are given in the following sections.

Note that the derivative information can also be included in the training data 
for KRR, which usually requires implementing higher-order derivatives of the 
kernel functions [26, 37, 39, 47–50]. Such implementations in MLatom are cur-
rently underway and will be released in the near future.

All KRR calculations are implemented in Fortran and OpenMP, and we use the 
efficient Intel® Math Kernel Library (MKL) LAPACK[51] routines for calculat-
ing regression coefficients.

3.2  KREG

KREG is the ML model type designed for constructing accurate PESs of a single 
molecule [12]. Its name is strictly speaking not an acronym but can be somewhat 
loosely derived from the first letters of the underlying components: KRR with the 
RE descriptor and the Gaussian kernel function. The RE descriptor is a vector of all 
inverse distances ra,b≠a between atoms a and b ≠ a in a molecule normalized relative 
to the corresponding distances in some reference structure of the same molecule, 
usually its equilibrium geometry:

The RE descriptor is a global descriptor, meaning that it describes the molecule 
as a whole, and the KREG model learns the QC property directly without parti-
tioning it into, e.g., atomic contributions as done by many models discussed below. 
This descriptor is also a complete descriptor, meaning that it uniquely represents 
the molecular geometry as the latter can always be derived from the descriptor up 
to rotation, translation, and such symmetry operations as reflection [10]. Rotational 
and translation invariance is a feature of the RE descriptor that ensures that scalar 
properties such as total energy are invariant to these operations according to the laws 
of physics [10].

The RE descriptor does not, however, ensure homonuclear permutational invari-
ance, e.g., that interchange of hydrogen atoms in the methyl group  CH3 does not 
change the total energy [10, 12]. Thus, several variants of the KREG model are 
possible depending on how this issue is dealt with. The simplest approximation is 
to neglect permutational invariance, i.e., by using the unsorted RE descriptor as 
obtained after transforming XYZ coordinates [10]. Another approximation is to sort 
homonuclear atoms using some criteria. In MLatom, this is done by sorting homo-
nuclear atoms in descending order with respect to the sum of nuclear repulsions to 
other atoms [12]. This may help ensure the same sorting of atoms while doing struc-
ture-based sampling but may lead to discontinuities in the approximating function, 

(34)
�f̂ (x(�))

�Mat

=

Ntr∑
j=1

�j

Nd∑
d=1

�k
(
�, �j

)
�x(�)d

�x(�)d

�Mat

(35)�T =
[
⋯

rref
a,b≠a

ra,b≠a
⋯

]



1 3

Topics in Current Chemistry          (2021) 379:27  Page 17 of 41    27 

which is problematic, e.g., in molecular dynamics [12]. Finally, permutational invar-
iance can be ensured using the permutational invariant kernel that takes as input the 
permuted RE descriptor (see "Permutationally invariant kernel") [12]. The latter is 
the most accurate but also most computationally expensive [10].

If the derivatives of the KREG model are necessary, they can be easily obtained 
using the expressions discussed in the previous sub-section and the first-order deriv-
ative of the RE descriptor:

where

The first-order derivatives of the KREG models are implemented for both the 
unsorted and permuted RE descriptor variants.

3.3  Coulomb Matrix

The Coulomb matrix (CM) descriptor is popular in ML studies, where its vectorized 
form is used as the input vector [14]:

Like the RE descriptor, it is a global, complete descriptor based on the internu-
clear distances (in Bohr), ensuring rotational and translational invariance. However, 
it can also differentiate between molecules of different compositions by including 
nuclear charges Z (in a.u.) essentially to calculate internuclear repulsions in its off-
diagonal elements. Its dimensionality, however, is limited by the largest number of 
Nat atoms among molecules in the training set, and, for a smaller number of atoms, 
the CM descriptor elements are padded with zeros. Better ML models nowadays 
exist for treating molecules with a different number of atoms [4], and some of them 
are interfaced to MLatom, as discussed below. The CM matrix can also be used for 
constructing the PES of a single molecule though.

Like the RE descriptor, three variants of the CM matrix are available in 
MLatom: unsorted, sorted, and permuted. In the sorted variant, the atoms are 
sorted so that the Euclidean norms of columns and rows of the matrix are in 
descending order [15]. In the case of using the CM descriptor for a single molecule 
PES, the unsorted CM matrix has many redundant elements (as it is symmetric, 

(36)
�x(�)d

�Mat

= xd
1

r2
a,b

(
Mbt −Mat

)
,

(37)
xd =

rref
a,b

ra,b
=

rref
a,b��∑3

s=1

�
Mas −Mbs

�2�

� = ���

⎛
⎜⎜⎜⎝

0.5Z2.4
1

⋯
Z1ZNat

r1Nat

⋮ ⋱ ⋮
Z
Nat

Z1

r
Nat1

⋯ 0.5Z2.4
Nat

⎞⎟⎟⎟⎠



 Topics in Current Chemistry          (2021) 379:27 

1 3

   27  Page 18 of 41

only one-half of it is needed without diagonal elements), while the sorting can 
lead to large discontinuities in the approximating function [2]. Despite this, the 
unsorted Coulomb matrix was used in the molecular dynamics studies [52, 53], 
where its first-order derivative is also needed. It is implemented in MLatom for 
the unsorted variant as:

3.4  Permutationally Invariant Kernel

Permutationally invariant (symmetrized) kernel is employed to take into account the 
permutational invariance of the homonuclear atoms [7, 10, 12, 18]:

where k is one of the kernel functions mentioned above and P̂ permutes the order of 
atoms that are selected by the user. The descriptor is calculated for each such per-
mutation, and hence it is called the permuted descriptor. The denominator normal-
izes the kernel function [39]. Unnormalized variants of this kernel symmetrization 
approach were used to extend the original GDML model type[48] to be permuta-
tionally invariant (creating the sGDML model type [19] interfaced to MLatom 2 and 
discussed below) and to create conceptually related RKHS + F [20] (reproducing 
kernel Hilbert space using energies and forces) model type.

The first-order derivative of the permutationally invariant kernel defined in 
Eq. 40 is given by:

The derivative 
�k
(
x(�),x

(
P̂�j

))

�Mat

 is analogous to the derivatives �k(x(�),x(�j))
�Mat

 shown above 

with the difference that elements xj,d change with each permutation as x
(
P̂�j

)
d
 . The deriva-

tives 
�k
(
x(�),x

(
P̂�

))

�Mat

 require additional derivation because Mat enters both x(�) and x
(
P̂�

)
 . 

The dth element stemming from atoms a and b in the original atom order corresponds to 
x(�)d from which x

(
P̂�

)
d
 is subtracted in both the Gaussian and Matérn kernel functions. 

On the other hand, the element stemming from atoms a and b in the permuted atom order will 

(39)
�x(�)d

�Mat

= −
ZaZb

r3
ab

(
Mat −Mbt

)

(40)

k
�
x(�), x

�
�j

��
=

∑Nperm

P̂
k
�
x(�), x

�
P̂�j

��
�∑Nperm

P̂
k
�
x(�), x

�
P̂�

���∑Nperm

P̂
k
�
x
�
�j

�
, x
�
P̂�j

�� ,

(41)

�k
�
x(�), x

�
�j

��
�Mat

=
��Nperm

P̂
k
�
x(�), x

�
P̂�

���Nperm

P̂
k
�
x
�
�j

�
, x
�
P̂�j

���−1∕2

⎧⎪⎨⎪⎩

⎡
⎢⎢⎢⎣

�Nperm

P̂

�k
�
x(�), x

�
P̂�j

��

�Mat

⎤⎥⎥⎥⎦
−

1

2

�Nperm

P̂

�k
�
x(�), x

�
P̂�

��

�Mat

∑Nperm

P̂
k
�
x(�), x

�
P̂�j

��

∑Nperm

P̂
k
�
x(�), x

�
P̂�i

��
⎫⎪⎬⎪⎭



1 3

Topics in Current Chemistry          (2021) 379:27  Page 19 of 41    27 

be x
(
P̂�

)
P̂d

= x(�)d , from which x(�)
P̂d

 is subtracted in both the Gaussian and Matérn 
kernel functions. Thus, the expressions for this term are for these kernel functions:

• Gaussian:

• Matérn:

4  Interfaces

As mentioned in the "Introduction", it is not that easy to start using a new ML 
model, especially for novices who did not get their feet wet in this field, even some-
times for experienced researchers who have some preconceptions from their familiar 
frameworks. Such difficulties could be alleviated by just implementing all models 
we want into a single all-in-one software. However, this approach is labor-intensive 
and unsustainable, considering the fast-growing numbers of ML models. A better 
solution to tackle this problem is to make interfaces to third-party software, which 
is easier to implement and modularize. The drawbacks of such interface-based solu-
tions compared to all-in-one software are the need to install multiple third-party 
software packages and the decreased computational efficiency due to converting data 
and communication bottlenecks between programs. The interface-based approach 
has, however, the considerable benefit of the rapid development of one uniform 
workflow, which eliminates the problem at its origin: the lack of standardization. 
This allows researchers to quickly test multiple ML model types, an advantage that 
outweighs the drawbacks in many cases.

Thus, we introduced the interfaces to third-party ML software in MLatom 2. 
Each interface should have four main functions inside, which are shown in Fig. 6. 
Arguments parsing translates MLatom-style input arguments to third-party equiva-
lent. Data conversion takes in MLatom-format data then converts them into the cor-
responding format required by third-party software. Model training communicates 

(42)
�k
(
x(�), x

(
P̂�

))

�Mat

=
1

�2

[(
x(�)d − x

(
P̂�

)
d

)
+
(
x(�)d − x(�)

P̂d

)]
k
(
x(�), x

(
P̂�

))

(43)

�k
�
x(�), x

�
P̂�

��

�M
at

=
2

�2

��
x(�)d − x

�
P̂�

�
d

�
+
�
x(�)d − x(�)

P̂d

��

× exp

⎛⎜⎜⎜⎝
−

‖x(�) − x

�
P̂�

�
‖
2

�

⎞⎟⎟⎟⎠

n−1�
k=0

(n + k − 1)!

(2n)!

×

�
n

k

�
(n − k)

⎛⎜⎜⎜⎝

2‖x(�) − x

�
P̂�

�
‖
2

�

⎞⎟⎟⎟⎠

n−k−1



 Topics in Current Chemistry          (2021) 379:27 

1 3

   27  Page 20 of 41

with third-party software to get output models by sending prepared data and argu-
ments. Model using uses third-party software to get estimated values from the 
trained model. The interfaces are modularized Python 3 scripts stored in the sub-
folder interfaces in the MLatom program directory.

The currently interfaced third-party software packages are listed in Table 1 and 
will be introduced in the sub-sections below. Note that some programs provide sev-
eral ML model types other than the listed ones. Using them through the interfaces 
might already be supported in MLatom or needs some slight modifications in the 
interface modules. However, only the listed model types are tested and will be dis-
cussed in this paper. Generally, we follow the strategy of making no modifications 
in the interfaced programs so that they can be taken “as is” and only the path to their 
executable should be known to MLatom. The only exception is the PhysNet, which 
uses TensorFlow v1. To make it compatible with the newer version of Python and 
TensorFlow [54], names of some legacy functions need to be changed to their equiv-
alent in TensorFlow v2. Also, it is important to note that the main hyperparameters 
of each interfaced model can be modified easily through the standard input file of 
MLatom such that no modifications to the third-party software are required.

Besides the third-party ML software, we also implemented the interface to a 
hyperparameter optimization library called hyperopt [33], to provide a solution for 
hyperparameter optimization, which is unavailable in most of third-party software 
packages.

Fig. 6  Flowchart for interfaces



1 3

Topics in Current Chemistry          (2021) 379:27  Page 21 of 41    27 

Ta
bl

e 
1 

 In
te

rfa
ce

d 
th

ird
-p

ar
ty

 so
ftw

ar
e 

w
ith

 th
ei

r v
er

si
on

s a
nd

 M
L 

m
od

el
 ty

pe
s t

es
te

d 
he

re

M
ai

n 
pr

og
ra

m
 d

ev
el

op
er

s, 
pr

og
ra

m
m

in
g 

la
ng

ua
ge

s 
of

 th
e 

m
aj

or
ity

 o
f t

he
 c

od
e,

 a
nd

 U
R

L 
ad

dr
es

se
s 

to
 a

cc
es

s 
th

e 
pr

og
ra

m
 a

re
 p

ro
vi

de
d.

 R
ef

er
en

ce
s 

to
 M

L 
m

od
el

 ty
pe

s 
(a

nd
 th

ird
-p

ar
ty

 p
ac

ka
ge

s t
he

m
se

lv
es

 w
he

re
 av

ai
la

bl
e)

 a
re

 a
ls

o 
gi

ve
n

Pr
og

ra
m

 (v
er

si
on

)
M

L 
m

od
el

 ty
pe

s
D

ev
el

op
er

s
La

ng
ua

ge
U

R
L

sG
D

M
L 

[2
5]

 (0
.4

.4
)

sG
D

M
L 

[1
9]

C
hm

ie
la

 e
t a

l
Py

th
on

w
w

w.
 sg

dm
l. o

rg
G

A
P 

(1
59

89
76

56
6)

Q
U

IP
 (5

c6
15

98
e4

)
G

A
P 

[2
6]

-S
O

A
P 

[2
7]

C
sá

ny
i, 

B
ar

tó
k,

 K
er

m
od

e 
et

 a
l

Fo
rtr

an
w

w
w.

 lib
at

 om
s. o

rg
gi

th
ub

.c
om

/li
bA

to
m

s/
Q

U
IP

To
rc

hA
N

I [
28

] (
2.

2)
A

N
I [

21
]

G
ao

, R
am

ez
an

gh
or

ba
ni

, S
m

ith
, I

sa
ye

v,
 

Ro
itb

er
g,

 e
t a

l
Py

th
on

gi
th

ub
.c

om
/a

iq
m

/to
rc

ha
ni

D
ee

PM
D

-k
it 

[2
9]

 (v
1.

2.
2)

D
PM

D
 [3

0]
D

ee
pP

ot
-S

E 
[3

1]
W

an
g,

 Z
ha

ng
, H

an
, E

 e
t a

l
C

 +
  +

 
Py

th
on

w
w

w.
 de

ep
m

d.
 or

g/
gi

th
ub

.c
om

/d
ee

pm
od

el
in

g/
de

ep
m

d-
ki

t
Ph

ys
N

et
 [2

2]
Ph

ys
N

et
 [2

2]
U

nk
e,

 M
eu

w
ly

Py
th

on
gi

th
ub

.c
om

/M
M

un
ib

as
/P

hy
sN

et

http://www.sgdml.org
http://www.libatoms.org
http://www.deepmd.org/


 Topics in Current Chemistry          (2021) 379:27 

1 3

   27  Page 22 of 41

4.1  Hyperopt

Hyperparameters—the parameters that tune the shape of the ML model and stay 
unchanged in the training—have a huge impact on the performance of an ML model. 
To unleash the full potential of an ML model, the hyperparameters need to be well 
optimized, and here comes the hyperparameter optimization problem. Solving this 
problem manually is too cumbersome and would rarely lead to the optimal solu-
tion. Hence, many packages that are capable of automatic hyperparameter optimiza-
tion are available; hyperopt [33] is one of them. Hyperopt is an open-source Python 
library that uses a Bayesian method with tree-structured Parzen estimator (TPE) 
[32] to find the optima in hyperparameter spaces.

In MLatom 2, we added the interface that uses the hyperopt library as a con-
venient solution to the hyperparameter optimization problem. By simply substituting 
hyperparameters that need to be tuned with keywords for hyperopt search space, the 
interface will be activated to perform the automatic optimizing process (see Fig. 2). 
Optimization splits the training set into the sub-training and validation sets. The 
trained model’s error on the validation set will be sent to hyperopt to get the next 
searching point in hyperparameter space. If KMs are used, the final model will be 
generated by training on the entire training set with optimized hyperparameters after 
the optimization, while for NNs, the best model trained during the hyperparameter 
optimization will be the final ML model.

4.2  sGDML

sGDML [19] is a symmetrized variant of the gradient-domain machine learning 
(GDML [48]) model type and is interfaced to MLatom through the sGDML pro-
gram [25]. The sGDML method is a KRR model with the descriptor of unnormal-
ized inverse distances (the ID descriptor)

Thus, it has the same basic properties as the RE descriptor, i.e., the ID descriptor 
is also a global and complete descriptor ensuring rotational and translational invari-
ance, but not permutational invariance of homonuclear atoms.

 In contrast to the KREG model, the GDML model learns only from the energy 
gradients. It also uses the Matérn kernel function, whose expression differs slightly 
from that implemented in MLatom. For learning from gradients, the common 
KRR approximating function for scalar properties is modified by using covariance 
between derivatives to predict the XYZ components of energy gradients:

As usual, the linear system of KRR equations is solved with the kernel matrix K, 
now of a size 3NatNtr × 3NatNtr:

(44)�T =
[
⋯

1

ra,b
⋯

]

(45)
�f (�)

�Mat

=

Ntr∑
j=1

Nat∑
b=1

3∑
u=1

�j,bu
�2k

(
�, �j

)
�Mat�Mj,bu

.



1 3

Topics in Current Chemistry          (2021) 379:27  Page 23 of 41    27 

When the energies are needed, they are obtained by integrating the energy 
gradients, and the integration constant is found by fitting to the reference energy 
values:

The sGDML tackles the permutational invariance by using a modified, unnormal-
ized permutational invariant kernel with permutations chosen automatically to mini-
mize the matching cost between pairs of training points. The sGDML program also 
supports automatic hyperparameter optimization via cross-validation.

The sGDML method achieves remarkable accuracy given only a very small num-
ber of training points, as was shown for molecular PESs visited during dynamics 
[19]. Because of the large size of the kernel matrix, the method is practically appli-
cable only for hundreds, up to several thousand training points. Note that when we 
refer to a single “training point,” we mean all the associated information for one 
geometry, and the real number of reference values available for sGDML is 3Nat 
times larger (the number of Cartesian energy gradient components). sGDML effi-
ciently utilizes all this available information, which explains its accuracy.

The sGDML program requires a proprietary data format that uses NumPy’s 
[55] npz file as the container. Scripts to convert from other data formats (e.g., 
extended XYZ) are included in the program. Like MLatom, sGDML has a built-
in hyperparameter optimization function for the hyperparameter � using a grid 
search, which is enabled by default; � is not optimized. The users can also specify 
� or a list of � values for the grid search, but only integers are acceptable.

4.3  GAP‑QUIP

The Gaussian approximation potential [26] (GAP) model is interfaced to MLatom 
through QUIP and GAP suite programs. Like native implementations in MLatom, 
GAP is also based on a kernel method, although it was developed within Gauss-
ian process regression (GPR) formalism rather than KRR. In the GAP model, the 
total energy of a system is represented as the sum of atomic energies:

As a result, local descriptors, rather than global descriptors as used in 
MLatom’s native models and sGDML, describing atomic environments for 

(46)

⎛
⎜⎜⎜⎜⎝

�2k(�1,�1)
�M1,11�M1,11

+ � ⋯
�2k(�1,�Ntr)

�M1,11�MNtr ,Nat3

⋮ ⋱ ⋮

�2k(�Ntr ,�1)
�MNtr ,Nat3

�M1,11

⋯
�2k(�Ntr ,�Ntr )

�MNtr ,Nat3
�MNtr ,Nat3

+ �

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎝

�1,11
⋮

�Ntr ,Nat3

⎞
⎟⎟⎠
=

⎛
⎜⎜⎜⎝

�y1
�M1,11

⋮
�yNtr

�MNtr ,Nat3

⎞
⎟⎟⎟⎠
.

(47)f (�) = const +

Ntr∑
j=1

Nat∑
b=1

3∑
u=1

�j,bu
�k
(
�, �j

)
�Mj,bu

.

(48)E =

atoms∑
i

�i



 Topics in Current Chemistry          (2021) 379:27 

1 3

   27  Page 24 of 41

every single atom are used. The GAP suite provides a smooth overlap of atomic 
positions [27] (SOAP) descriptor for this purpose. The construction of a SOAP 
descriptor is quite involved as it has to respect all the required symmetries (rota-
tional, translational, permutational), and its derivations are given in the literature 
[7, 27, 56]. Alternative versions of SOAP descriptor also exist [35].

Here, we describe the main points behind this descriptor. The local environ-
ment of an atom is represented by the atomic neighborhood density �i(�) that is 
constructed using Gaussians for the ith atom as:

where �ij is a vector pointing from atom i to the neighboring atom j, σatom reflects 
the atom “size”, and fcut is the cutoff function with the width of the cutoff region rΔ 
approaching the limits of rcut

The Gaussians are expanded with a set of orthonormal radial basis functions 
gn [57]:

where �̂ projects the direction of the vector r on the unit sphere and Ylm are spherical 
harmonics. For better efficiency, the choices of n and l are limited by nmax and lmax , 
respectively. The orthonormal radial basis functions are constructed from

and the overlap matrix � = �T� with elements Snn� = ∫ rcut
0

�n(r)�n� (r)r
2dr as

The coefficients cnlm are obtained as

(49)�i(�) =
�
j

exp

⎛
⎜⎜⎜⎝
−

���� − �ij
���
2

2�2
atom

⎞
⎟⎟⎟⎠
fcut

�����ij
���
�
,

(50)fcut(r) =

⎧⎪⎨⎪⎩

1, r ≤ rcut − rΔ,
1

2

�
cos

�
𝜋

r−rcut+rΔ

rΔ

�
+ 1

�
, rcut − rΔ < r ≤ rcut,

0, r > rcut,

(51)

𝜌i(�) =
∑

n < nmax

l < lmax|m| ≤ l

ci
nlm

gn(r)Ylm
(
��
)
.

(52)�n(r) = exp

⎛⎜⎜⎜⎝
−

�
r −

rcutn

nmax

�2

2�2
atom

⎞⎟⎟⎟⎠

(53)gn(r) =
∑

n�
(�−1)nn��n� (r).

(54)ci
nlm

= ⟨gn Ylm���i⟩.



1 3

Topics in Current Chemistry          (2021) 379:27  Page 25 of 41    27 

The SOAP descriptor pi consists of 
∑

m

�
ci
nlm

�∗
ci
n�lm

 , which correspond to the 
power spectrum elements.

The kernel matrix elements are calculated using the dot-product kernel 
function

which are subsequently normalized, raised to a power of � (a positive integer) to 
tune its sensitivity, and scaled by σ�:

Then the SOAP descriptor and kernel are used in estimating what the values 
of atomic energies are most likely to be by performing GPR that uses the same 
expression for making estimations as KRR:

The problem with this expression is that the α coefficients cannot be obtained 
directly using the similar expression as described in "Kernel ridge regression", 
because there are (usually) no reference Ntr atomic energies � and only Nobs total 
energies E are available. In the GAP approach, this is solved by introducing a lin-
ear transformation using the Ntr × Nobs matrix L with elements 1 or 0 so that

Then, the kernel matrix becomes

Using this kernel matrix, the regression coefficients α can be calculated in the 
usual manner as in the KRR approach. In the GAP–SOAP notation, the regulariza-
tion hyperparameter is denoted �2

E
 for energies. The GAP–QUIP implementation 

also allows for using sparsification to reduce the size of the kernel matrix and, in 
this case, additional parameters defining the size Nsparse of the sparse kernel matrix 
and its regularization parameter �jitter added to its diagonal elements can be set by 
the user.

GAP–SOAP implementation allows the inclusion of energy gradient informa-
tion to the kernel matrix. In this case, the transformation matrix L has additional 
elements with the differentiation operators �∕�Mat , which results in calculating 
covariance between energies and their partial derivatives and also between deriv-
atives [7, 26, 56].

The GAP software suite from the libatoms.org website contains a gap_fit pro-
gram that trains the GAP model with the SOAP descriptor. The QUIP program is 
used to get predictions from the model trained by gap_fit. To use this combination 

(55)Kij =
|||�i ∙ �j

|||,

(56)Kij = σ�

�
Kij√

Kii

√
Kjj

��

.

(57)�(�) =
∑
j

�jK
(
�, �j

)

(58)� = �T�,

(59)�NobsNobs
= �T�NtrNtr

�,



 Topics in Current Chemistry          (2021) 379:27 

1 3

   27  Page 26 of 41

for PES training and prediction, the data need to be formatted to extended XYZ 
format.

The gap_fit program provides tons of options that enable users to make fine 
adjustments to the training process, including settings for atomic energies’ off-
sets, sparsification, etc. (Table  2). However, the regularization hyperparameter 
and hyperparameters in the SOAP descriptor need to be set by the user manually, 
which makes it harder to realize the model’s full potential.

4.4  TorchANI

TorchANI [28] is a Python library that implements the ANI model type [21], with 
PyTorch [58] as its backend for NN construction.

ANI is the abbreviation for ANAKIN-ME, which was back-engineered to 
Accurate NeurAl networK engINe for Molecular Energies. The ANI atomic envi-
ronmental vector used in this model is a local descriptor, and is derived from the 
descriptor in Behler and Parrinello’s work [59].

The ANI descriptor ��⃗GX
i
 for element X ’s i th atom contains a radial and an angu-

lar part, and both parts are further subdivided into subAEVs, in which the atoms 
taken into consideration will be limited by the same element.

For each element, the radial subAEV consists of input vector elements GR
k
∈ � 

for different values of radial shift hyperparameters R(k)
s

:

Table 2  Main tunable hyperparameters in the Gaussian approximation potential (GAP) model type and 
their corresponding keywords in the gap_fit program

a Values chosen to provide reasonable accuracy for a small molecule (ethanol) by manual testing on the 
MD17 data set [48]

Hyperparameter Keyword Description Default values in  MLatoma

σ default_sigma List of regularization param-
eters for energy, force, viral 
and hessian

{0.0005, 0.001, 0.1, 0.1}

� zeta Power of kernel 4
� delta Scaling of kernel 1
rcut cutoff Cutoff radius 6
rΔ cutoff_transition_width Cutoff transition width 0.5
nmax n_max Number of radial basis func-

tions
6

lmax l_max Number of angular basis func-
tions

6

σatom atom_sigma Gaussian smearing width of 
atom density

0.5



1 3

Topics in Current Chemistry          (2021) 379:27  Page 27 of 41    27 

Similarly, for each pair of elements, the angular subAEV consists of input vec-
tor elements GA

p,q
∈ � for different combinations of angular shift hyperparameter 

�
(q)
s  and another set of radial shift hyperparameters R(p)

s :

In the equations above, fc is the cutoff function used in Behler–Parrinello NN 
potentials [59] and similar to that used in GAP-SOAP, � , R(k)

s
,R(p)

s  , �(q)s  and � are 
predefined hyperparameters. Parameters � are defined separately for radial part and 
angular part similarly to Rs.

After being computed, each atom’s AEV will be plugged into its own NN as the 
input vector to predict atomic energy, and the atoms of the same element share the 
same NN structure to ensure the permutational invariance of the trained model.

The total energies are obtained by summing all atomic energies, while atomic 
forces are generated by differentiating atomic energies using PyTorch’s automatic 
differentiation engine. TorchANI reads HDF5 files, where training data are organ-
ized and stored.

As shown in Table 3, many hyperparameters can be tuned in ANI descriptors, not 
to mention the hyperparameters of NNs. However, as a Python library, TorchANI 
provides neither default values nor optimization method for hyperparameters, but 
only the basic core functions of ANI model type as building blocks. The final train-
ing scripts need to be written by the users themselves.

(60)GR
k
=
∑
j≠i

e
−�

(
Rij−R

(k)
s

)2

fc
(
Rij

)
.

(61)GA
p,q

= 21−�
∑
j,k≠i

(
1 + cos

(
�ijk − �(q)

s

))�
e
−�

(
Rij+Rik

2
−R

(p)
s

)2

fC
(
Rij

)
fC
(
Rik

)
.

Table 3  Table of the main tunable hyperparameters in ANI model type related to the local AEV descrip-
tor and their corresponding keywords in the TorchANI program

Hyperparameters for neural networks are not listed
a Taken from the example script on the website of the program (https:// aiqm. github. io/ torch ani- test- docs/ 
examp les/ nnp_ train ing. html)

Hyperparameter Keyword Description Default values in  MLatoma

RC (radial) Rcr radial cutoff radius 5.3
RC (angular) Rca angular cutoff radius 3.5
� (radial) EtaR radial smoothness in radial part {16}
Rs (radial) ShfR list of radial shifts in radial part {0.90, 1.17, 1.44, 1.71, 1.98, 2.24, 

2.51, 2.78, 3.05, 3.32, 3.59, 3.86, 
4.12, 4.39, 4.66, 4.93}

� (angular) EtaA radial smoothness in angular part {8}
Rs (angular) ShfA list of radial shifts in angular part {0.90, 1.55, 2.20, 2.85}
�s ShfZ list of angular shifts {0.19, 0.59, 0.98, 1.37, 1.77, 2.16, 

2.55, 2.95}
� Zeta angular smoothness {32}

https://aiqm.github.io/torchani-test-docs/examples/nnp_training.html
https://aiqm.github.io/torchani-test-docs/examples/nnp_training.html


 Topics in Current Chemistry          (2021) 379:27 

1 3

   27  Page 28 of 41

4.5  DeePMD‑kit

DeePMD-kit [29] is a software with the Deep Potential Molecular Dynamics 
(DPMD) [30] ML model type and its successor Deep Potential—Smooth Edition 
(DeepPot-SE) [31] built-in. Like ANI, DPMD and DeepPot-SE are also based on 
NNs with local descriptors. Nevertheless, DeepPot-SE switched to a learned local 
descriptor rather than the fixed one in its predecessor.

In DeepPot-SE, the generalized local environment matrix �̃i (which is the 
descriptor of original DPMD) and the local embedding matrix �i are used in repre-
senting the local environment of atom i with Ni neighboring atoms. The matrix �̃i 
has Ni rows and each row are defined from relative coordinates and distances as:

where:

The Ni ×M matrix �i is generated from the local embedding network (also called 
filter network), which outputs a M-dimensional vector for each neighboring atom j:

where gk is the k th output of local embedding network applied to s
(
rij
)
.

The final descriptor, or the feature matrix �i of atom i is defined by

where �i1 and �i2 are first M1 and M2 columns of �i . The translational, rotational 
and permutational invariance is preserved in such expressions.

The feature matrices are then passed to NNs that generate atomic energies as the 
ANI model does.

DeePMD-kit program comes with its Python 3 environment, including Tensor-
Flow and LAMMPS interface for MD simulations. The training data need to be 
saved in plain text in a specified style and then be transformed to what the program 
can read by the scripts they provide.

Training with the DeePMD-kit needs to be initialized with json input script, in 
which options and parameters are defined. The main tunable hyperparameters of 
DeepPot-SE are listed in Table 4, while hyperparameters in NNs (e.g., hyperparam-
eters for network architecture, learning rate schedule, etc.) are not listed. However, 
this package cannot optimize those hyperparameters. Also, DeePMD-kit does not 
include in its native implementation the regularization scheme called early stopping 
often required in NN models to control the number of iterations performed during 

(62)
{
s
(
rij
)
,
xij

rij
s
(
rij
)
,
yij

rij
s
(
rij
)
,
zij

rij
s
(
rij
)}

,

(63)s
�
rij
�
=

⎧⎪⎨⎪⎩

1

rij
, rij < rcs

1

rij

�
1

2
cos

�
𝜋

rij−rcs

rc−rcs

�
+

1

2

�
, rcs < rij < rc

0, rij > rc

(64)�i
jk
= gk

(
s
(
rij
))

(65)�i =
(
�i1

)∗
�̃i

(
�̃i

)∗

�i2
,



1 3

Topics in Current Chemistry          (2021) 379:27  Page 29 of 41    27 

training, to stop the simulation before the model can reach an overfitting stage. 
Thus, we provide an external early stopping function as part of the interface module 
that monitors the training progress (based on the loss for the validation set) in the 
MLatom/DeePMD-kit output to stop the simulation when the criterion defined in 
the input has been reached.

4.6  PhysNet

PhysNet [22] is another ML model type based on learned local descriptor but using 
a message-passing NN architecture as the underlying model.

In PhysNet, the embedding vectors �z are used as the input vectors:

where the superscript l over a vector denotes the layer number ( l = 0 stands for the 
input vector), and zi is the nuclear charge of atom i . Moreover, the number of fea-
tures is defined by hyperparameter F.

Coordinates are transformed to � by applying K radial basis functions and cutoff 
functions to internuclear distances:

where � and �k are parameters of radial basis functions and rij denotes pairwise 
Euclidean distance between atoms i and j.

Then �0 is passed through a stack of Nmodule modules which are connected in 
series, and � is passed to each module.

There is a building block that will be repeatedly used in modules called a resid-
ual block. The residual block is a 2-layer mini residual neural network (ResNet), in 
which input vectors will also directly contribute to output vectors by skipping over 
the layers in between:

(66)�0
i
= �zi ,

(67)gk
(
rij
)
= fc

(
rij
)
⋅ e−�k(e

−rij−�k)
2

,

Table 4  Main hyperparameters in DeepPot-SE model type, and their corresponding keywords in the 
DeePMD-kit program. Hyperparameters for neural networks are not listed

a Taken from [31]

Hyperparameter Keyword Description Default values in  MLatoma

filter_neuron filter_neuron List of numbers of neurons in filter 
network

{30, 60}

M2 n_axis_neuron Number of columns
in �i2

6

n_neuron n_neuron List of numbers of neurons in fitting net {80, 80, 80}
r
c

rcut Cutoff radius 6.5
r
cs

rcut_smth Radius cutoff transition starts 6.3
sel_a sel_a Maximum numbers of neighboring 

atoms
10 for each element



 Topics in Current Chemistry          (2021) 379:27 

1 3

   27  Page 30 of 41

where � and � consist of learnable weights and biases, � is the activation function.
Inside each module, a prototype vector �̃ will be generated by a NN first:

where the elements of matrix � are learnable coefficients for gk
(
rij
)
 , and ◦ is the 

Hadamard product operator.
This prototype �̃ then will be tuned by N interaction

residual
 residual blocks to get the opti-

mized vector � which will then ‘interact’ with �:

where � is also a learnable parameter.
After going through another Natomic

residual
 residual blocks, input � will be passed sepa-

rately to the next module (if it exists) and the output block which turns � to module’s 
output �m , which contributes to the final output � after a linear transformation whose 
parameters are also learnable.

Unlike previously described models trained with local descriptors (GAP–SOAP, 
ANI, DeepPot-SE), PhysNet may also take long-range interactions (e.g., electro-
static and dispersion) into account. By default, dispersion corrections are enabled 
in the MLatom interface, while electrostatic corrections are disabled because their 
calculations require additional input (reference dipole moments).

The official implementation of the PhysNet model is programmed in Python 3.6 
with TensorFlow v1, and the data need to be stored in the Numpy’s npz format of 
a specific structure. Similar to TorchANI, using the PhysNet program also needs 
much manual work on script-writing and hyperparameter-tuning (see Table 5 for the 
list of the main hyperparameters).

(68)�l+2
i

= �l
i
+�l+1�

(
�l�

(
�l
i

)
+ �l

)
+ �l+1,

(69)�̃l
i
= �

(
�l

�
�
(
�l
i

)
+ �l

�

)
+
∑
j≠i

�l�
(
rij
)
◦�

(
�l

�
�
(
�l
j

)
+ �

�

�

)
,

(70)�l+1
i

= �l◦�l
i
+�l�

(
�l
i

)
+ �l,

Table 5  Main tunable hyperparameters in PhysNet, and their corresponding keywords

a Taken from [22]

Hyperparameter Keyword Description Default values 
in  MLatoma

F num_features Number of input features 128
K num_basis Number of radial basis functions 64
Nmodule num_blocks Number of modules 5
N

atomic
residual

num_residual_atomic Number of residual blocks after interac-
tion

2

N
interaction
residual

num_residual_interaction Number of residual blocks in interaction 3

N
output

residual
num_residual_output Number of residual blocks in output block 1

rcut cutoff Cutoff radius 10



1 3

Topics in Current Chemistry          (2021) 379:27  Page 31 of 41    27 

5  Applications

In this section, we present several case studies demonstrating the capabilities of 
MLatom 2.

5.1  Case Study 1: Hyperparameter Optimization

As mentioned in section "Hyperopt" in "Interfaces", a solution for hyperparam-
eter optimization problem is given in MLatom 2 by introducing the interface to the 
hyperopt package. Here, we demonstrate a case using hyperopt interface to optimize 
the hyperparameters of the learning rate schedule in DeepPot-SE model type (start_
lr and decay_rate, Table 6). For this, we used PES data (including energy gradients) 
of ethanol from MD17 data set [48]. A total of 1  k training points and 20  k test 
points were chosen randomly from the data set without overlapping. Other technical 
details can be found in Fig. 7 and Table 6.

For comparison, we also took two sets of start_lr and decay_rate from original lit-
erature on the DeepPot-SE [31] and DPMD models [30] (see Table 6). These values 
were used for the same data set but with much larger training set sizes (50 and 95 k).

As shown in Table 6, the optimization process achieved significantly better accu-
racies in both energies and gradients prediction, despite being used for a related 
task as reported in the literature. This indicates that hyperparameter optimization 
is highly recommended for each new case, even for cases similar to previously pub-
lished ones.

Table 6  Root-mean-squares errors (RMSEs) in energies and energy gradients for DeepPot-SE potential 
of ethanol potential energy surface trained on 1 k random training points for the independent test set of 
20 k randomly chosen test points for hyperparameters start_lr and decay_rate  taken from the literature 
(Sets  Aa and  Bb) and optimized using MLatom’s interfaces.c

a Hyperparameters are taken for the DeepPot-SE model used for MD17 data set
b Hyperparameters are taken for the DPMD model used for MD17 data set
c In DeePMD-kit, a step decay schedule is used for learning rate decay. The related hyperparameter start-
ing learning rate (start_lr) and the decay rate (decay_rate) were optimized, while the decay steps (decay_
steps) were fixed to 200 with a stopping batch (stop_batch) set to 40,000. The search space was set to be 
from 0.0001 to 0.01 for starting learning rate and from 0.9 to 0.99 for the decay rate. Both spaces were 
set to be linear for 10 attempts of searching. The geometric mean of RMSE in energies and its gradients 
was used as the validation error

Set A from [31]a Set B from [30]b Optimized

start_lr (starting learning rate) 0.005 0.001 0.005675
decay_rate (decay rate) 0.96 0.95 0.9688
RMSE in energies (kcal/mol) 0.96 3.20 0.74
RMSE in gradients (kcal/mol/Å) 2.53 6.36 1.77



 Topics in Current Chemistry          (2021) 379:27 

1 3

   27  Page 32 of 41

5.2  Case Study 2: Learning Curves

In this part, we provide cases of MLatom’s learning curve task (see "Learning 
curves") to show how KRR performance varies with the different molecular descrip-
tors being used. Unsorted, sorted, and permuted RE descriptors, unsorted and sorted 
Coulomb matrix, and unsorted inverse distances descriptor were examined on eth-
anol, with energy data from MD17 data set [48]. The descriptors are denoted as 
uRE, sRE, pRE, uCM, sCM, and uID, respectively, and details for RE and CM can 
be found in subsections "KREG" and "Coulomb matrix" in section "Native imple-
mentations". The uID descriptor is not among native implementations. Thus, it is 
provided to MLatom, which also demonstrates support for external, user-defined 
descriptors. We used the Gaussian kernel throughout, i.e., KRR with the uRE, sRE, 
and pRE descriptors are equivalent to the corresponding KREG model variants. All 
these descriptors were tested with seven training set sizes roughly evenly spaced on 
the log scale from 100 to 10 k. Other training and testing details can be found in 
Fig. 8a.

The results (Fig. 8b) show the big impact of molecular descriptor choice on ML 
performance. First of all, let us look at the unsorted descriptors. The RE descriptor 
and CM are both related to the unnormalized inverse distances (ID) (see subsec-
tions "Native implementations" and "sGDML"). The uRE descriptor is a normalized 
version of the uID descriptor, with its advantages and disadvantages manifested in 
differences in the corresponding learning curves. Normalization gives equal impor-
tance to both close-range and long-range interactions, which is detrimental to accu-
racy for scarce training data (up to 1 k training points in case of this data set) but is 
advantageous when more training data are available. uCM has a product of nuclear 
charges in the nominator, which is different for each pair of elements and may 

Fig. 7  Part of input and output of MLatom for hyperparameter optimization of DeepPot-SE model using 
the interfaces to the hyperopt and DeePMD-kit packages



1 3

Topics in Current Chemistry          (2021) 379:27  Page 33 of 41    27 

introduce sub-optimal weighting of the descriptor elements, leading to increased 
error relative to the uID descriptor [2].

The importance of properly taking into account the permutational invariance 
is demonstrated by using the sorted and permuted descriptors. Sorting is the sim-
plest approach, but it causes discontinuities in the interpolant and leads to much 
worse results even compared to the unsorted descriptors. One of the more solid 
approaches, the permutationally invariant kernel using the permuted RE descriptors, 
can preserve permutational invariance without malfunctioning and achieves much 
better performance than uRE and better than uID (except for a very small number of 
training points).

5.3  Case Study 3: Δ‑Learning and Structure‑Based Sampling

Training with Δ-learning [9] and choosing training points using structure-based 
sampling [5] can offer ML models with better accuracy. To showcase the superiority 
of these approaches, we compared them to the direct ML models of the target prop-
erty and random sampling. Here, we provide test results with four combinations of 
learning (direct vs. Δ) and sampling (random vs. structure-based) approaches using 
the KREG model type. The data set from reference [9] containing the PES of  CH3Cl 
calculated at several QM levels was used.

For the Δ-learning in this case study, CCSD(T)/CBS energy ECCSD(T) served as 
the target energy, while MP2/aug-cc-pVQZ energy EMP2 was considered as the base-
line energy. Thus, the Δ-learning model ΔCCSD(T)

MP2
 is defined by:

Fig. 8  a Input file for learning curve task using the permuted RE descriptor with kernel ridge regression 
(KRR) (used with the Gaussian kernel, i.e., the ML model type is a permutationally invariant KREG). 
The scheme for the learning curve is defined with keywords lcNtrains and lcNrepeats. b A three-dimen-
sional (3D) representation of an ethanol molecule. Atoms are numbered by their order in the MD17 data 
set [41]. Hydrogen atoms in methyl and methylene groups are permuted separately, as defined in the 
input using the option permInvNuclei = 4–5.6–7–8. c Model performances with different descriptors and 
training set sizes. Hyperparameter optimization was performed throughout. Markers and error bars show 
the mean and standard deviation values of RMSEs in predictions for 20 k independent test points. All 
data sets were randomly sampled



 Topics in Current Chemistry          (2021) 379:27 

1 3

   27  Page 34 of 41

Fig. 9  a A 3D representation of the  CH3Cl molecule. Atoms are numbered by their order in the data 
set from reference [9]. Inside  CH3Cl, hydrogen atoms 3, 4, and 5 are indistinguishable, and thus their 
permutations should result in no difference in molecular properties. b Sample input script for train-
ing ML models using the Δ-learning and structure-based sampling [5] for the selection of the training 
set. c ML energies vs. reference CCSD(T)/CBS energies. ML models were trained with the 10% points 
of the whole data set and were tested with the remaining 90% points. R2 is approaching 1 in all cases, 
with slightly larger values for more accurate models and thus are not shown for clarity. Right column 
Δ-learning models with MP2/aug-cc-pVQZ energies as a baseline. Left column ML model trained with 
reference CCSD(T)/CBS energies directly. Bottom row Data sets were split by random sampling. Top row 
Data sets were split by structure-based sampling



1 3

Topics in Current Chemistry          (2021) 379:27  Page 35 of 41    27 

where the ML model giving predictions f̂ (�) is trained on the differences between 
target and baseline methods ECCSD(T) − EMP2 . Thus, the cost of the Δ-learning model 
is determined by the cost of the baseline QC method, and the user should provide 
MLatom with the values calculated using the baseline QC method for both training 
and prediction.

For sampling, we used 10% points of the whole data set as the training set and the 
remaining 90% as the test set. Also, as illustrated in Fig. 9a, the  CH3Cl molecule has 
three indistinguishable hydrogen atoms, so the permutational invariant kernel was 
used (see "Permutationally invariant kernel").

Figure 9c shows a sample input file, and the scatter plots with RMSEs for all 
four combinations. Both Δ-learning and structure-based sampling led to much 
more accurate predictions for CCSD(T)/CBS energy than the simplest combina-
tion of random sampling and direct learning, and even more so when these two 
approaches were combined.

5.4  Case Study 4: Absorption Spectrum

In this case study, we will calculate the absorption cross section for an acrid-
ophosphine derivative [60] (Fig. 10) using ML-NEA implementation in MLatom, 
and discuss the effect of the number of points in the training set and nuclear 
ensemble. MLatom allows refining cross sections using existing data. There-
fore, we used this feature to perform all the simulations using QC data at the 
ωB97XD[61]/def2-SVP [62–64] level of theory from our previous publica-
tion (see [60] for computational details; energies and oscillator strengths for 30 
excited states are available at https:// doi. org/ 10. 6084/ m9. figsh are. 13635 353).

By default, MLatom determines the optimal training point number iteratively 
by adding 50 points at each step, and the cross section is calculated using 50 k in 
the nuclear ensemble. In our example, the ML-NEA procedure converged after 
200 points. For comparison, the cross section obtained without ML using these 
200 points in the nuclear ensemble (QC-NEA spectrum, Fig. 10a) curve has many 
peaks, and it is hard to judge what are the actual peaks and what are the arti-
facts of insufficient statistical sampling, while the ML-NEA spectrum is much 
smoother and ML calculations  incur only small additional  computational cost. 
The popular single-point convolution (SPC) approach gives a blue-shifted spec-
trum with an arbitrary bandwidth [65].

Although MLatom determines the training set size automatically, one can always 
request calculations of additional training points to check whether the spectrum has 
“truly converged” by visual inspection. For example, by comparing ML-NEA spec-
tra with the ones calculated using 200, 250, and 300 points, one can see that they 
are very close to each other with some minor deviations (Fig. 10b). The ML-NEA 
spectrum obtained with 300 points is nearly the same as the spectrum calculated 
with 2  k points. One should remember, however, that the accuracy of ML-NEA 

(71)Δ
CCSD(T)

MP2
(�) = EMP2(�) + f̂ (�)

https://doi.org/10.6084/m9.figshare.13635353


 Topics in Current Chemistry          (2021) 379:27 

1 3

   27  Page 36 of 41

Fig. 10  a Structure of the acridophosphine derivative molecule investigated here. MLatom input file and 
the list of additional required files for the ML-NEA calculations and the resulting spectrum. QC calcu-
lation details are defined in the Gaussian input files. Alternatively, the user can provide pre-calculated 
results (useful to refine spectra). The number of training points (200) was determined automatically by 
MLatom, and the resulting cross section ML-NEA is compared to the cross section obtained using tradi-
tional QC-NEA with the same points and single-point convolution approach (QC-SPC) based on broad-
ening lines only for the equilibrium geometry. The broadening factor for QC-NEA is 0.05 eV and for 
QC-SPC 0.3 eV. The reference (ref) spectrum is the experimental cross section from [60]. b ML-NEA 
spectra with sample input file for 200, 250, 300, and 2 k training points. c Sample input file and spectra 
calculated with 50 k, 100 k, 150 k, 200 k, 300 k, 400 k, 500 k, and 1 M points in the nuclear ensemble. 
The spectra are shifted vertically for clarity



1 3

Topics in Current Chemistry          (2021) 379:27  Page 37 of 41    27 

depends on the accuracy of the underlying QC method, and the difference between 
the experimental spectrum and ML-NEA, even with the largest 2 k number of train-
ing points, is bigger than the difference between ML-NEA spectra with 200, 250, 
and 300 points (compare Fig. 10a, b). One minor aspect is that, although the default 
50 k points is a rather large ensemble, it still leads to slightly rugged curves. Per-
fectly smooth curves can be obtained by simply increasing the number of ensemble 
points (Fig. 10c), and MLatom is a computationally efficient tool for this task; one 
can calculate very smooth curves, e.g., with 1 M points. One should keep in mind 
though, that such a large number is not necessary, and it will take about 10 GB of 
disk space to store the file with the nuclear ensemble geometries and take more time 
to make ML prediction and cross section calculations.

6  Conclusions

In this review article, we have described the MLatom 2 software package, which 
provides an integrative platform for AML simulations. Unlike other specialized 
AML packages, MLatom has been developed with the aim of facilitating the appli-
cation of ML models to the wide variety of tasks often required in computational 
chemistry research.

Its capabilities range from native implementations such as the KREG model and 
other KRR model types (with the Coulomb matrix or any other user-defined descrip-
tors as well as the Gaussian, Matérn, Laplacian, and exponential kernel functions) to 
interfaces to the third-party packages with popular models. The latter models are 
overviewed here for the sake of completeness and include sGDML, GAP–SOAP, 
ANI, DPMD, DeepPot-SE, and PhysNet. Other AML model types can be imple-
mented easily by using the modular approach adopted in MLatom for third-party 
interfaces.

Other important features of MLatom for AML simulations such as model evalu-
ation, hyperparameter optimization, sampling procedures (including farthest-point 
and structure-based sampling), Δ-learning, self-correction, and automatic learning 
curve generation are overviewed too. We also discussed how all steps required for 
the absorption spectrum simulation with the machine learning-nuclear ensemble 
approach (ML-NEA) are integrated in MLatom. Finally, we provided examples of 
how MLatom can be used for selected applications: hyperparameter optimization, 
learning curve generation, Δ-learning and structure-based sampling, and absorption 
spectrum simulation.

MLatom provides a user-friendly, integrated platform for researchers who want 
to use a wide variety of AML approaches and related techniques. It is also a useful 
package for educational purposes as it is used for teaching the basic and advanced 
concepts behind ML use in quantum chemistry (see, e.g., the book chapter [2], and 
online tutorial at http:// MLatom. com). We are continually developing this platform 
based on the needs for practical AML computations such as dynamics, calculation 
of excited-state properties, and rovibrational spectrum simulations, improvement of 
QC methods, and materials design.

http://MLatom.com


 Topics in Current Chemistry          (2021) 379:27 

1 3

   27  Page 38 of 41

Authors’ contributions P.O.D. is MLatom project supervisor and lead developer. P.O.D. and Y.F.H. 
derived and implemented analytical gradients in MLatomF and made other improvements to the KREG 
model. F.G. implemented learning curves and interfaces to hyperopt, PhysNet, DeePMD-kit, TorchANI, 
and GAP-SOAP packages. M.P.J. assisted in implementation of PhysNet, DeePMD-kit, and TorchANI 
interfaces. B.X.X. implemented ML-NEA approach. J.H. assisted in implementation of interfaces to 
GAP-SOAP and DeePMD-kit. P.O.D. has done all other implementations in MLatom. P.O.D. and 
M.B. conceived the project of testing third-party software. P.O.D., F.G., B.X.X., and Y.F.H. wrote the 
manuscript and prepared all illustrations; all other authors revised, discussed, and commented on the 
manuscript.

Funding P.O.D. acknowledges funding by the National Natural Science Foundation of China (No. 
22003051) and via the Lab project of the State Key Laboratory of Physical Chemistry of Solid Surfaces. 
M.B. and M.P.J. acknowledges the support of the European Research Council (ERC) Advanced grant 
SubNano (Grant agreement 832237).

 Availability of Data and Material All the data used in this manuscript are available from literature and 
online databases as cited in the article. No new data was generated in this study.

 Code Availability MLatom 2 is available from http:// MLatom. com free of charge for non-commercial 
and non-profit uses, such as academic research and education. All interfaced third-party software should 
be obtained and installed by the user separately.

Declarations 

Conflict of Interest The authors declare that they have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is 
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission 
directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen 
ses/ by/4. 0/.

References

 1. Dral PO (2020) Quantum chemistry in the age of machine learning. J Phys Chem Lett 11(6):2336–
2347. https:// doi. org/ 10. 1021/ acs. jpcle tt. 9b036 64

 2. Dral PO (2020) Quantum chemistry assisted by machine learning. In: Ruud K, Brändas EJ (eds) 
Advances in quantum chemistry. Chemical physics and quantum chemistry, vol 81. Elsevier, Amd-
sterdam, pp 291–324. https:// doi. org/ 10. 1016/ bs. aiq. 2020. 05. 002

 3. Butler KT, Davies DW, Cartwright H, Isayev O, Walsh A (2018) Machine learning for molecular 
and materials science. Nature 559(7715):547–555. https:// doi. org/ 10. 1038/ s41586- 018- 0337-2

 4. von Lilienfeld OA, Müller K-R, Tkatchenko A (2020) Exploring chemical compound space 
with quantum-based machine learning. Nat Rev Chem 4(7):347–358. https:// doi. org/ 10. 1038/ 
s41570- 020- 0189-9

 5. Manzhos S, Carrington T Jr (2020) Neural network potential energy surfaces for small molecules 
and reactions. Chem Rev. https:// doi. org/ 10. 1021/ acs. chemr ev. 0c006 65

 6. Mueller T, Hernandez A, Wang C (2020) Machine learning for interatomic potential models. J 
Chem Phys 152(5):050902. https:// doi. org/ 10. 1063/1. 51263 36

 7. Bartók AP, Csányi G (2015) Gaussian approximation potentials: a brief tutorial introduction. Int J 
Quantum Chem 115(16):1051–1057. https:// doi. org/ 10. 1002/ qua. 24927

http://MLatom.com
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1021/acs.jpclett.9b03664
https://doi.org/10.1016/bs.aiq.2020.05.002
https://doi.org/10.1038/s41586-018-0337-2
https://doi.org/10.1038/s41570-020-0189-9
https://doi.org/10.1038/s41570-020-0189-9
https://doi.org/10.1021/acs.chemrev.0c00665
https://doi.org/10.1063/1.5126336
https://doi.org/10.1002/qua.24927


1 3

Topics in Current Chemistry          (2021) 379:27  Page 39 of 41    27 

 8. Behler J (2016) Perspective: machine learning potentials for atomistic simulations. J Chem Phys 
145(17):170901. https:// doi. org/ 10. 1063/1. 49661 92

 9. Dral PO, Xue B-X, Ge F, Hou Y-F, Pinheiro Jr M (2013–2021) MLatom: A Package for Atom-
istic Simulations with Machine Learning. Xiamen University, Xiamen, China, http:// MLatom. com 
Accessed 23 Feb 2021

 10. Dral PO (2019) MLatom: a program package for quantum chemical research assisted by machine 
learning. J Comput Chem 40(26):2339–2347. https:// doi. org/ 10. 1002/ jcc. 26004

 11. Ramakrishnan R, Dral PO, Rupp M, von Lilienfeld OA (2015) Big data meets quantum chemis-
try approximations: the Δ-machine learning approach. J Chem Theory Comput 11(5):2087–2096. 
https:// doi. org/ 10. 1021/ acs. jctc. 5b000 99

 12. Dral PO, Owens A, Yurchenko SN, Thiel W (2017) Structure-based sampling and self-correcting 
machine learning for accurate calculations of potential energy surfaces and vibrational levels. J 
Chem Phys 146(24):244108. https:// doi. org/ 10. 1063/1. 49895 36

 13. Xue B-X, Barbatti M, Dral PO (2020) Machine learning for absorption cross sections. J Phys Chem 
A 124(35):7199–7210. https:// doi. org/ 10. 1021/ acs. jpca. 0c053 10

 14. Rupp M, Tkatchenko A, Müller K-R, von Lilienfeld OA (2012) Fast and accurate modeling of 
molecular atomization energies with machine learning. Phys Rev Lett 108(5):058301. https:// doi. 
org/ 10. 1103/ Physr evlett. 108. 058301

 15. Hansen K, Montavon G, Biegler F, Fazli S, Rupp M, Scheffler M, von Lilienfeld OA, Tkatchenko A, 
Müller K-R (2013) Assessment and validation of machine learning methods for predicting molecular 
atomization energies. J Chem Theory Comput 9(8):3404–3419. https:// doi. org/ 10. 1021/ ct400 195d

 16. Dral PO, von Lilienfeld OA, Thiel W (2015) Machine learning of parameters for accurate semiem-
pirical quantum chemical calculations. J Chem Theory Comput 11(5):2120–2125. https:// doi. org/ 
10. 1021/ acs. jctc. 5b001 41

 17. Dral PO, Barbatti M, Thiel W (2018) Nonadiabatic excited-state dynamics with machine learning. J 
Phys Chem Lett 9:5660–5663. https:// doi. org/ 10. 1021/ acs. jpcle tt. 8b024 69

 18. Dral PO, Owens A, Dral A, Csányi G (2020) Hierarchical machine learning of potential energy sur-
faces. J Chem Phys 152(20):204110. https:// doi. org/ 10. 1063/5. 00064 98

 19. Chmiela S, Sauceda HE, Müller K-R, Tkatchenko A (2018) Towards exact molecular dynamics 
simulations with machine-learned force fields. Nat Commun 9(1):3887. https:// doi. org/ 10. 1038/ 
s41467- 018- 06169-2

 20. Koner D, Meuwly M (2020) Permutationally invariant, reproducing kernel-based potential energy 
surfaces for polyatomic molecules: from formaldehyde to acetone. J Chem Theory Comput 
16(9):5474–5484. https:// doi. org/ 10. 1021/ acs. jctc. 0c005 35

 21. Smith JS, Isayev O, Roitberg AE (2017) ANI-1: an extensible neural network potential with DFT 
accuracy at force field computational cost. Chem Sci 8(4):3192–3203. https:// doi. org/ 10. 1039/ c6sc0 
5720a

 22. Unke OT, Meuwly M (2019) PhysNet: a neural network for predicting energies, forces, dipole 
moments, and partial charges. J Chem Theory Comput 15(6):3678–3693. https:// doi. org/ 10. 1021/ 
acs. jctc. 9b001 81

 23. Gv R (1995) Python tutorial, Technical Report CS-R9526. Centrum voor Wiskunde en Informatica 
(CWI), Amsterdam

 24. Rossum GV, Drake FL (2009) Python 3 Reference Manual. CreateSpace, 100 Enterprise Way, Suite 
A200, Scotts Valley, CA

 25. Chmiela S, Sauceda HE, Poltavsky I, Müller K-R, Tkatchenko A (2019) sGDML: constructing 
accurate and data efficient molecular force fields using machine learning. Comput Phys Commun 
240:38–45. https:// doi. org/ 10. 1016/j. cpc. 2019. 02. 007

 26. Bartók AP, Payne MC, Kondor R, Csányi G (2010) Gaussian approximation potentials: the accu-
racy of quantum mechanics, without the electrons. Phys Rev Lett 104(13):136403. https:// doi. org/ 
10. 1103/ Physr evlett. 104. 136403

 27. Bartók AP, Kondor R, Csányi G (2013) On representing chemical environments. Phys Rev B 
87(18):187115. https:// doi. org/ 10. 1103/ physr evb. 87. 184115

 28. Gao X, Ramezanghorbani F, Isayev O, Smith JS, Roitberg AE (2020) TorchANI: a free and open 
source PyTorch-based deep learning implementation of the ANI neural network potentials. J Chem 
Inf Model 60(7):3408–3415. https:// doi. org/ 10. 1021/ acs. jcim. 0c004 51

 29. Wang H, Zhang L, Han J, Weinan E (2018) DeePMD-kit: a deep learning package for many-body 
potential energy representation and molecular dynamics. Comput Phys Commun 228:178–184. 
https:// doi. org/ 10. 1016/j. cpc. 2018. 03. 016

https://doi.org/10.1063/1.4966192
http://MLatom.com
https://doi.org/10.1002/jcc.26004
https://doi.org/10.1021/acs.jctc.5b00099
https://doi.org/10.1063/1.4989536
https://doi.org/10.1021/acs.jpca.0c05310
https://doi.org/10.1103/Physrevlett.108.058301
https://doi.org/10.1103/Physrevlett.108.058301
https://doi.org/10.1021/ct400195d
https://doi.org/10.1021/acs.jctc.5b00141
https://doi.org/10.1021/acs.jctc.5b00141
https://doi.org/10.1021/acs.jpclett.8b02469
https://doi.org/10.1063/5.0006498
https://doi.org/10.1038/s41467-018-06169-2
https://doi.org/10.1038/s41467-018-06169-2
https://doi.org/10.1021/acs.jctc.0c00535
https://doi.org/10.1039/c6sc05720a
https://doi.org/10.1039/c6sc05720a
https://doi.org/10.1021/acs.jctc.9b00181
https://doi.org/10.1021/acs.jctc.9b00181
https://doi.org/10.1016/j.cpc.2019.02.007
https://doi.org/10.1103/Physrevlett.104.136403
https://doi.org/10.1103/Physrevlett.104.136403
https://doi.org/10.1103/physrevb.87.184115
https://doi.org/10.1021/acs.jcim.0c00451
https://doi.org/10.1016/j.cpc.2018.03.016


 Topics in Current Chemistry          (2021) 379:27 

1 3

   27  Page 40 of 41

 30. Zhang L, Han J, Wang H, Car R, Weinan E (2018) Deep potential molecular dynamics: a scalable 
model with the accuracy of quantum mechanics. Phys Rev Lett 120(14):143001. https:// doi. org/ 10. 
1103/ PhysR evLett. 120. 143001

 31. Zhang LF, Han JQ, Wang H, Saidi WA, Car R (2018) End-to-end symmetry preserving inter-atomic 
potential energy model for finite and extended systems. Adv Neural Inf Process Syst 31:4436–4446

 32. Bergstra J, Bardenet R, Bengio Y, Kégl B (2011) Algorithms for hyper-parameter optimization. In: 
Shawe-Taylor J, Zemel R, Bartlett P, Pereira F, Weinberger KQ (eds) Advances in neural informa-
tion processing systems, vol 24. Curran Associates, Red Hook, NY

 33. Bergstra J, Yamins D, Cox DD Making a Science of Model Search: Hyperparameter Optimization 
in Hundreds of Dimensions for Vision Architectures. In: Proceedings of the 30th International Con-
ference on International Conference on Machine Learning, Atlanta, GA, 2013. ICML’13. JMLR.
org, pp I–115–I–123. https:// doi. org/ 10. 5555/ 30428 17. 30428 32

 34. Rezac J (2016) Cuby: an integrative framework for computational chemistry. J Comput Chem 
37(13):1230–1237. https:// doi. org/ 10. 1002/ jcc. 24312

 35. Himanen L, Jäger MOJ, Morooka EV, Federici Canova F, Ranawat YS, Gao DZ, Rinke P, Foster 
AS (2020) DScribe: library of descriptors for machine learning in materials science. Comput Phys 
Commun 247:106949. https:// doi. org/ 10. 1016/j. cpc. 2019. 106949

 36. Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning: data mining, infer-
ence, and prediction, 2nd edn. Springer, New York

 37. Christensen AS, von Lilienfeld OA (2020) On the role of gradients for machine learning of molecular 
energies and forces. Mach Learn Sci Technol 1(4):045018. https:// doi. org/ 10. 1088/ 2632- 2153/ abba6f

 38. Behler J (2011) Neural network potential-energy surfaces in chemistry: a tool for large-scale simula-
tions. Phys Chem Chem Phys 13(40):17930–17955. https:// doi. org/ 10. 1039/ C1cp2 1668f

 39. Rasmussen CE, Williams CKI (2006) Gaussian processes for machine learning. MIT Press, Boston
 40. Cortes C, Jackel LD, Solla SA, Vapnik V, Denker JS (1994) Learning curves: asymptotic values and 

rate of convergence. Advances in neural information processing systems. Morgan Kaufmann, San 
Mateo, CA, pp 327–334

 41. Crespo-Otero R, Barbatti M (2012) Spectrum simulation and decomposition with nuclear ensem-
ble: formal derivation and application to benzene, furan and 2-phenylfuran. Theor Chem Acc 
131(6):1237. https:// doi. org/ 10. 1007/ s00214- 012- 1237-4

 42. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone 
V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, 
Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams, Ding F, Lipparini F, 
Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega 
N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima 
T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery Jr. JA, Peralta JE, Ogliaro F, 
Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand 
J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, 
Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ 
(2016) Gaussian 16 Rev. C.01. Wallingford, CT

 43. Barbatti M, Granucci G, Ruckenbauer M, Plasser F, Crespo-Otero R, Pittner J, Persico M, Lischka 
H (2013) NEWTON-X: a package for Newtonian dynamics close to the crossing seam. http:// www. 
newto nx. org. Accessed 23 Feb 2021

 44. Barbatti M, Ruckenbauer M, Plasser F, Pittner J, Granucci G, Persico M, Lischka H (2014) 
 Newton-X: a surface-hopping program for nonadiabatic molecular dynamics. WIREs Comp Mol 
Sci 4(1):26–33. https:// doi. org/ 10. 1002/ wcms. 1158

 45. Schinke R (1995) Photodissociation dynamics: spectroscopy and fragmentation of small polyatomic 
molecules. Cambridge University Press, Cambridge

 46. Weisstein EW (2020) “Least Squares Fitting." From MathWorld—A Wolfram Web Resource. 
https:// mathw orld. wolfr am. com/ Least Squar esFit ting. html. Accessed 25 Dec 2020

 47. Schmitz G, Klinting EL, Christiansen O (2020) A Gaussian process regression adaptive density 
guided approach for potential energy surface construction. J Chem Phys 153(6):064105. https:// doi. 
org/ 10. 1063/5. 00153 44

 48. Chmiela S, Tkatchenko A, Sauceda HE, Poltavsky I, Schütt KT, Müller K-R (2017) Machine learn-
ing of accurate energy-conserving molecular force fields. Sci Adv 3(5):e1603015. https:// doi. org/ 10. 
1126/ sciadv. 16030 15

 49. Denzel A, Kästner J (2018) Gaussian process regression for geometry optimization. J Chem Phys 
148(9):094114. https:// doi. org/ 10. 1063/1. 50171 03

https://doi.org/10.1103/PhysRevLett.120.143001
https://doi.org/10.1103/PhysRevLett.120.143001
https://doi.org/10.5555/3042817.3042832
https://doi.org/10.1002/jcc.24312
https://doi.org/10.1016/j.cpc.2019.106949
https://doi.org/10.1088/2632-2153/abba6f
https://doi.org/10.1039/C1cp21668f
https://doi.org/10.1007/s00214-012-1237-4
http://www.newtonx.org
http://www.newtonx.org
https://doi.org/10.1002/wcms.1158
https://mathworld.wolfram.com/LeastSquaresFitting.html
https://doi.org/10.1063/5.0015344
https://doi.org/10.1063/5.0015344
https://doi.org/10.1126/sciadv.1603015
https://doi.org/10.1126/sciadv.1603015
https://doi.org/10.1063/1.5017103


1 3

Topics in Current Chemistry          (2021) 379:27  Page 41 of 41    27 

 50. Fdez Galván I, Raggi G, Lindh R (2021) Restricted-variance constrained, reaction path, and tran-
sition state molecular optimizations using gradient-enhanced kriging. J Chem Theory Comput 
17(1):571–582. https:// doi. org/ 10. 1021/ acs. jctc. 0c011 63

 51. Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J, Du Croz J, Greenbaum A, Ham-
marling S, McKenney A, Sorensen D (1999) LAPACK users’ guide, 3rd edn. Society for Industrial 
and Applied Mathematics, Philadelphia, PA

 52. Hu D, Xie Y, Li X, Li L, Lan Z (2018) Inclusion of machine learning kernel ridge regression poten-
tial energy surfaces in on-the-fly nonadiabatic molecular dynamics simulation. J Phys Chem Lett 
9:2725–2732. https:// doi. org/ 10. 1021/ acs. jpcle tt. 8b006 84

 53. Krämer M, Dohmen PM, Xie W, Holub D, Christensen AS, Elstner M (2020) Charge and exci-
ton transfer simulations using machine-learned hamiltonians. J Chem Theory Comput 16(7):4061–
4070. https:// doi. org/ 10. 1021/ acs. jctc. 0c002 46

 54. Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard M, 
Kudlur M, Levenberg J, Monga R, Moore S, Murray DG, Steiner B, Tucker P, Vasudevan V, War-
den P, Wicke M, Yu Y, Zheng X TensorFlow: A system for large-scale machine learning. In: 12th 
USENIX Symposium on Operating Systems, Savannah, GA, USA, 2016. USENIX Association. 
https:// doi. org/ 10. 5555/ 30268 77. 30268 99

 55. Harris CR, Millman KJ, van der Walt SJ, Gommers R, Virtanen P, Cournapeau D, Wieser E, Taylor 
J, Berg S, Smith NJ, Kern R, Picus M, Hoyer S, van Kerkwijk MH, Brett M, Haldane A, Del Rio JF, 
Wiebe M, Peterson P, Gerard-Marchant P, Sheppard K, Reddy T, Weckesser W, Abbasi H, Gohlke 
C, Oliphant TE (2020) Array programming with NumPy. Nature 585(7825):357–362. https:// doi. 
org/ 10. 1038/ s41586- 020- 2649-2

 56. Szlachta WJ, Bartók AP, Csányi G (2014) Accuracy and transferability of Gaussian approximation 
potential models for tungsten. Phys Rev B 90(10):104108. https:// doi. org/ 10. 1103/ PhysR evB. 90. 104108

 57. Taylor CD (2009) Connections between the energy functional and interaction potentials for materi-
als simulations. Phys Rev B 80(2):024104. https:// doi. org/ 10. 1103/ PhysR evB. 80. 024104

 58. Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, 
Antiga L, Desmaison A, Kopf A, Yang E, DeVito Z, Raison M, Tejani A, Chilamkurthy S, Steiner 
B, Fang L, Bai J, Chintala S (2019) PyTorch: an imperative style, high-performance deep learn-
ing library. In: Wallach H, Larochelle H, Beygelzimer A, d’Alché-Buc F, Fox E, Garnett R (eds) 
Advances in neural information processing systems, vol 32. Curran Associates, Red Hook, NY, pp 
8026–8037

 59. Behler J, Parrinello M (2007) Generalized neural-network representation of high-dimensional 
potential-energy surfaces. Phys Rev Lett 98(14):146401. https:// doi. org/ 10. 1103/ Physr evlett. 98. 
146401

 60. Schaub TA, Brülls SM, Dral PO, Hampel F, Maid H, Kivala M (2017) Organic electron acceptors 
comprising a dicyanomethylene-bridged acridophosphine scaffold: the impact of the heteroatom. 
Chem Eur J 23(29):6988–6992. https:// doi. org/ 10. 1002/ chem. 20170 1412

 61. Chai J-D, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped 
atom-atom dispersion corrections. Phys Chem Chem Phys 10(44):6615–6620. https:// doi. org/ 10. 
1039/ b8101 89b

 62. Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadru-
ple zeta valence quality for H to Rn: design and assessment of accuracy. Phys Chem Chem Phys 
7(18):3297–3305. https:// doi. org/ 10. 1039/ B5085 41a

 63. Schäfer A, Huber C, Ahlrichs R (1994) Fully optimized contracted Gaussian-basis sets of triple 
zeta valence quality for atoms Li to Kr. J Chem Phys 100(8):5829–5835. https:// doi. org/ 10. 1063/1. 
467146

 64. Schäfer A, Horn H, Ahlrichs R (1992) Fully optimized contracted Gaussian-basis sets for atoms Li 
to Kr. J Chem Phys 97(4):2571–2577

 65. Bai S, Mansour R, Stojanovic L, Toldo JM, Barbatti M (2020) On the origin of the shift between 
vertical excitation and band maximum in molecular photoabsorption. J Mol Model 26(5):107. 
https:// doi. org/ 10. 1007/ s00894- 020- 04355-y

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published 
maps and institutional affiliations.

https://doi.org/10.1021/acs.jctc.0c01163
https://doi.org/10.1021/acs.jpclett.8b00684
https://doi.org/10.1021/acs.jctc.0c00246
https://doi.org/10.5555/3026877.3026899
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1103/PhysRevB.90.104108
https://doi.org/10.1103/PhysRevB.80.024104
https://doi.org/10.1103/Physrevlett.98.146401
https://doi.org/10.1103/Physrevlett.98.146401
https://doi.org/10.1002/chem.201701412
https://doi.org/10.1039/b810189b
https://doi.org/10.1039/b810189b
https://doi.org/10.1039/B508541a
https://doi.org/10.1063/1.467146
https://doi.org/10.1063/1.467146
https://doi.org/10.1007/s00894-020-04355-y

	MLatom 2: An Integrative Platform for Atomistic Machine Learning
	Abstract
	1 Introduction
	2 Overview
	2.1 ML Tasks
	2.1.1 Using ML Models
	2.1.2 Creating ML Models
	2.1.3 Estimating Accuracy of ML Models
	2.1.4 Multi-step Tasks
	2.1.5 Learning Curves
	2.1.6 ML Nuclear Ensemble Spectra

	2.2 Data Set Tasks
	2.2.1 Splitting and Sampling
	2.2.2 Analysis of Data


	3 Native Implementations
	3.1 Kernel Ridge Regression
	3.2 KREG
	3.3 Coulomb Matrix
	3.4 Permutationally Invariant Kernel

	4 Interfaces
	4.1 Hyperopt
	4.2 sGDML
	4.3 GAP-QUIP
	4.4 TorchANI
	4.5 DeePMD-kit
	4.6 PhysNet

	5 Applications
	5.1 Case Study 1: Hyperparameter Optimization
	5.2 Case Study 2: Learning Curves
	5.3 Case Study 3: Δ-Learning and Structure-Based Sampling
	5.4 Case Study 4: Absorption Spectrum

	6 Conclusions
	References




