L5

Conical intersections

Mario Barbatti
A*Midex Chair Professor mario.barbatti@univ-amu.fr

Aix Marseille Université, Institut de Chimie Radicalaire

Linear approximation around a

 crossingSuppose a two-level molecule whose electronic Hamiltonian is $\mathrm{H}(\mathbf{R})$, where \mathbf{R} are the nuclear coordinates.

Given a basis of unknown orthogonal functions ϕ_{1} and ϕ_{2}, we want to solve the Schrödinger equation

$$
\left(H_{e}-E\right) \psi_{i}=0 \quad \psi_{i}=c_{i 1} \phi_{1}+c_{i 2} \phi_{2} \quad i=1,2
$$

The energies are given by

$$
\begin{gathered}
\operatorname{det}\left[\begin{array}{cc}
H_{11}-E & H_{12} \\
H_{21} & H_{22}-E
\end{array}\right]=0 \quad H_{i j}=\left\langle\phi_{i} \mid H_{e}(\mathbf{R}) \phi_{j}\right\rangle=H_{j i}^{*} \\
\text { Prove it! } \\
E_{1}=\frac{1}{2}\left(H_{11}+H_{22}\right)-\frac{1}{2}\left[\left(H_{11}-H_{22}\right)^{2}+4\left|H_{12}\right|^{2}\right]^{1 / 2} \\
E_{2}=\frac{1}{2}\left(H_{11}+H_{22}\right)+\frac{1}{2}\left[\left(H_{11}-H_{22}\right)^{2}+4\left|H_{12}\right|^{2}\right]^{1 / 2}
\end{gathered}
$$

In a more compact way:

$$
E_{1,2}=\Sigma \pm\left[\Delta^{2}+H_{12}^{2}\right]^{1 / 2}
$$

where

$$
\Sigma=\frac{1}{2}\left(H_{11}+H_{22}\right) \text { and } \quad \Delta=\frac{1}{2}\left(H_{11}-H_{22}\right)
$$

A degeneracy at \mathbf{R}_{x} will happen if

$$
\begin{aligned}
\Delta\left(\mathbf{R}_{X}\right) & =0 \\
H_{12}\left(\mathbf{R}_{X}\right) & =0
\end{aligned}
$$

In general, two independent coordinates are necessary to tune these conditions.

In a more compact way:

$$
E_{1,2}=\Sigma \pm\left[\Delta^{2}+H_{12}^{2}\right]^{1 / 2}
$$

where

$$
\Sigma=\frac{1}{2}\left(H_{11}+H_{22}\right) \quad \text { and } \quad \Delta=\frac{1}{2}\left(H_{11}-H_{22}\right)
$$

Expansion in first order around \mathbf{R}_{x} for Σ :

$$
\begin{aligned}
& \Sigma=\frac{1}{2}\left(\nabla H_{11}\left(\mathbf{R}_{X}\right) \cdot \mathbf{R}+\nabla H_{22}\left(\mathbf{R}_{X}\right) \cdot \mathbf{R}\right) \\
& =\frac{1}{2}\left(\mathbf{G}_{1}^{X} \cdot \mathbf{R}+\mathbf{G}_{2}^{X} \cdot \mathbf{R}\right) \quad \mathbf{G}_{i}^{X}=\nabla H_{i i}\left(\mathbf{R}_{X}\right) \\
& =\frac{1}{2} \mathbf{s}_{12}^{X} \cdot \mathbf{R}
\end{aligned}
$$

In a more compact way:

$$
E_{1,2}=\Sigma \pm\left[\Delta^{2}+H_{12}^{2}\right]^{1 / 2}
$$

where

$$
\Sigma=\frac{1}{2}\left(H_{11}+H_{22}\right) \text { and } \quad \Delta=\frac{1}{2}\left(H_{11}-H_{22}\right)
$$

In first order around \mathbf{R}_{x} each of these terms are:

$$
\begin{aligned}
& \Sigma=\left(\mathbf{G}_{1}^{X}+\mathbf{G}_{2}^{X}\right) \cdot \mathbf{R}=\mathbf{s}_{12}^{X} \cdot \mathbf{R} \quad \mathbf{G}_{i}^{X}=\nabla H_{i i}\left(\mathbf{R}_{X}\right) \\
& \Delta=\left(\mathbf{G}_{1}^{X}-\mathbf{G}_{2}^{X}\right) \cdot \mathbf{R}=\mathbf{g}_{12}^{X} \cdot \mathbf{R} \\
& H_{12}=\nabla H_{12}^{X} \cdot \mathbf{R}=\mathbf{f}_{12}^{X} \cdot \mathbf{R}
\end{aligned}
$$

And the energies in a point $\mathbf{R}_{X}+\mathbf{R}$ are in first order:

$$
E_{1,2} \approx \mathbf{s}_{12}^{X} \cdot \mathbf{R} \pm\left[\left(\mathbf{g}_{12}^{X} \cdot \mathbf{R}\right)^{2}+\left(\mathbf{f}_{12}^{X} \cdot \mathbf{R}\right)^{2}\right]^{1 / 2}
$$

Conical intersections

$$
E_{1,2} \approx \mathbf{s}_{12}^{X} \cdot \mathbf{R} \pm\left[\left(\mathbf{g}_{12}^{X} \cdot \mathbf{R}\right)^{2}+\left(\mathbf{f}_{12}^{X} \cdot \mathbf{R}\right)^{2}\right]^{1 / 2}
$$

Writting $\mathbf{g}=g \hat{\mathbf{x}} ; \quad \mathbf{f}=f \hat{\mathbf{y}} ; \quad \mathbf{s}=r \hat{\mathbf{x}}+s \hat{\mathbf{y}}$
then $\mathbf{g} \cdot \mathbf{R}=g R \cos \theta=g x$
$\mathbf{f} \cdot \mathbf{R}=f R \sin \theta=f y$
$\mathbf{s} \cdot \mathbf{R}=s_{x} R \cos \theta+s_{y} R \sin \theta$

$$
E_{1,2} \approx s_{x} x+s_{y} y \pm\left[g^{2} x^{2}+f^{2} y^{2}\right]^{1 / 2}
$$

$$
\begin{aligned}
& E_{1,2} \approx \mathbf{s}_{12}^{X} \cdot \mathbf{R} \pm\left[\left(\mathbf{g}_{12}^{X} \cdot \mathbf{R}\right)^{2}+\left(\mathbf{f}_{12}^{X} \cdot \mathbf{R}\right)^{2}\right]^{1 / 2} \\
& E_{1,2} \approx s_{x} x+s_{y} y \pm\left[g^{2} x^{2}+f^{2} y^{2}\right]^{1 / 2}
\end{aligned}
$$

Atchity, Xantheas, and Ruedenberg, J. Chem. Phys. 95, 1862 (1991)

The branching space

Parallel distortion

$$
E_{1,2} \approx \mathbf{s}_{12}^{X} \cdot \mathbf{R} \pm\left[\left(\mathbf{g}_{12}^{X} \cdot \mathbf{R}\right)^{2}+\left(\mathbf{f}_{12}^{X} \cdot \mathbf{R}\right)^{2}\right]^{1 / 2}
$$

What does happen if the molecule is distorted along a direction that is parallel to \mathbf{g} or \mathbf{f} ?

Linear approximation fails

Perpendicular distortion

$$
E_{1,2} \approx \mathbf{s}_{12}^{X} \cdot \mathbf{R} \pm\left[\left(\mathbf{g}_{12}^{X} \cdot \mathbf{R}\right)^{2}+\left(\mathbf{f}_{12}^{X} \cdot \mathbf{R}\right)^{2}\right]^{1 / 2}
$$

What does happen if the molecule is distorted along a direction that is perpendicular to \mathbf{g} and \mathbf{f} ?

$$
E_{1,2}=\mathbf{s}_{12}^{X}
$$

The branching space

- Starting at the conical intersection, geometrical displacement in the „branching space" lifts the degeneracy linearly.
- The branching space is the plane defined by the vectors \mathbf{g} and \mathbf{f}.
- Geometrical displacements along the other $3 \mathrm{~N}-8$ internal coordinates keep the degeneracy (in first order). These coordinate space is called seam or intersection space.

Note that

$$
\begin{aligned}
& \mathbf{f}_{12}^{X} \equiv \nabla H_{12}^{X}=-\left(E_{1}-E_{2}\right) \mathbf{h}_{12}^{X} \\
& \mathbf{h}_{12} \equiv\left\langle\psi_{1} \mid \nabla \psi_{2}\right\rangle \quad \text { Nonadiabatic coupling vector }
\end{aligned}
$$

For this reason the branching space is also referred as \mathbf{g} - h space.

See the proof, e.g., in Hu at al. J. Chem. Phys.
127, 0641032007 (Eqs. 2 and 3)

Characteristics of a conical intersection

Conical intersections are not rare

"When one encounters a local minimum (along a path) of the gap between two potential energy surfaces, almost always it is the shoulder of a conical intersection. Conical intersections are not rare; true avoided intersections are much less likely."
E

$$
\frac{V_{\text {tot }}(\min)}{V_{\text {tot }}(C I)}=\left(\rho^{2} \varepsilon\right)^{(3 N-4) / 2} \sim 0
$$

$\rho \sim \mathrm{O}(1)$ is the density of zeros in the H_{el} matrix.

Truhlar and Mead, Phys. Rev. A 68, 032501 (2003)

Conical intersections are connected

Conical intersections are distorted

$$
E_{1,2} \approx \mathbf{s}_{12}^{X} \cdot \mathbf{R} \pm\left[\left(\mathbf{g}_{12}^{X} \cdot \mathbf{R}\right)^{2}+\left(\mathbf{f}_{12}^{X} \cdot \mathbf{R}\right)^{2}\right]^{1 / 2}
$$

It can be rewritten as a general cone equation (Yarkony, JCP 114, 2601 (2001)):

$$
\left.\begin{array}{l}
E_{1,2} \approx d_{g h}\left[\sigma_{x} x+\sigma_{y} y \pm\left(\frac{1}{2}\left(x^{2}+y^{2}\right)+\frac{\Delta_{g h}}{2}\left(x^{2}-y^{2}\right)\right)^{1 / 2}\right] \\
d_{g h}=\left(|\mathbf{g}|^{2}+|\mathbf{h}|^{2}\right)^{1 / 2} \text { pitch parameter } \\
\sigma_{x}=\frac{\mathbf{s}}{d_{g h}} \cdot \frac{\mathbf{g}}{|\mathbf{g}|} \\
\sigma_{y}=\frac{\mathbf{s}}{d_{g h}} \cdot \frac{\mathbf{h}}{|\mathbf{h}|}
\end{array}\right\} \text { tilt parameters } \quad \begin{aligned}
& \Delta_{g h}=\frac{\left(|\mathbf{g}|^{2}-|\mathbf{h}|^{2}\right)}{d_{g h}^{2}} \text { asymmetry parameter }
\end{aligned}
$$

Photoproduct depends on the direction that the molecule leaves the intersection

Intersections don't need to be conicall!

- Bersuker, The Jahn Teller effect, 2006

Finding conical intersections:

Finding conical intersections

Conventional geometry optimization:

- Minimize:

$$
f(\mathbf{R})=E_{J}
$$

Conical intersection optimization:

- Minimize: $\quad f(\mathbf{R})=E_{J}$
- Subject to: $\quad E_{J}-E_{I}=0$
$H_{I J}=0$

Three basic algorithms:

- Penalty function (Ciminelli, Granucci, and Persico, 2004; MOPAC)
- Gradient projection (Beapark, Robb, and Schlegel 1994; GAUSSIAN)
- Lagrange-Newton (Manaa and Yarkony, 1993; COLUMBUS)
- Keal et al., Theor. Chem. Acc. 118, 837 (2007)

Where are the conical intersections?

formamide
pyridone

- Antol et al. JCP 127, 234303 (2007)

Look for:

- Twist around double bonds
- Ring puckering
- Ring opening
- Bond stretching
- Proton transfer
- Pyramidalization

Urocanic acid

- Major UVB absorber in skin
- Photoaging
- UV-induced immunosuppression
- Conical intersections surface crossing points allowing radiationless deactivation.
- There are two directions lifting the crossing linearly (branching space).
- There are 3N-8 directions along which the crossing remains (crossing seam).
- There are typical geometrical distortions that cause conical intersections.

