L2

Born-Oppenheimer Approximation and Beyond

Mario Barbatti

A*Midex Chair Professor mario.barbatti@univ-amu.fr

Aix Marseille Université, Institut de Chimie Radicalaire

Adiabatic x diabatic x nonadiabatic

From Greek diabatos: to be crossed or passed
diabatic
$=$ with crossing

a-diabatic
= without crossing

non-a-diabatic = with crossing!?

without exchanging (cross) heat or energy with environment

In quantum mechanics

"A physical system remains in its instantaneous eigenstate if a given perturbation is acting on it slowly enough and if there is a gap between the eigenvalue and the rest of the Hamiltonian's spectrum." Adiabatic theorem (Born and Fock, 1928).

In this example (adiabatic process), the spring constant k of a harmonic oscillator is slowly (adiabatically) changed. The system remains in the ground state, which is adjusted also smoothly to the new potential shape. Its state is always an eingenstate of the Hamiltonian at each time ("no crossing").

In quantum mechanics

"A physical system remains in its instantaneous eigenstate if a given perturbation is acting on it slowly enough and if there is a gap between the eigenvalue and the rest of the Hamiltonian's spectrum." Adiabatic theorem (Born and Fock, 1928).

In this example (diabatic process), the spring constant k of a harmonic oscillator is suddenly (diabatically) changed. The system remains in the original state, which is not a eingenstate of the new Hamiltonian. It is a superposition ("crossing") of several eingenstates of the new Hamiltonian.

In quantum chemistry

"The nuclear vibration in a molecule is a slowly acting perturbation to the electronic Hamiltonian. Therefore, the electronic system remains in its instantaneous eigenstate if there is a gap between the eigenvalue and the rest of the Hamiltonian's spectrum."

This is another way to say that:
The electrons see the nuclei instantaneously frozen

In quantum chemistry

Beyond Born-Oppenheimer I:
 Time-independent formulation

Time-independent formulation

$$
\begin{aligned}
& (\mathbf{H}-U) \Phi=0 \\
& \mathbf{H}=T_{N}+H_{e}\left\{\begin{array}{l}
T_{N}-\text { Kinetic energy nuclei } \\
H_{e}-\text { potential energy terms }
\end{array}\right. \\
& \left\{\psi_{i}\right\} \text { which solves: }\left(H_{e}-E_{i}\right) \psi_{i}=0 \quad \text { (adiabatic basis) } \\
& \psi_{i}=\psi_{i}(\mathbf{r} ; \mathbf{R}) \text { depends on the electronic coordinates } \mathbf{r} \text { and } \\
& \text { parametrically on the nuclear coordinates } \mathbf{R} .
\end{aligned}
$$

Since $\left\{\psi_{i}\right\}$ is a complete basis, any function in the Hilbert space can be exactly written as a linear combination of ψ_{i}.

$$
\begin{aligned}
& \Phi(\mathbf{r}, \mathbf{R})=\sum_{k=1}^{N_{s}} \chi_{k}(\mathbf{R}) \psi_{k}(\mathbf{r} ; \mathbf{R}) \quad \chi_{k} \text { nuclear wave function } \begin{array}{l}
\text { MOLGHT AND } \\
\mathbf{H}=T_{N}+H_{e} \frac{\text { LECULES }}{}
\end{array} \\
& (\mathbf{H}-U) \Phi=0 \\
& \text { Multiply by } \psi_{i} \text { at left and integrate in } \\
& \text { the electronic coordinates } \\
& \left(E_{i}-U\right) \chi_{i}+\sum_{k=1}^{N_{s}}\left\langle\psi_{i}\right| T_{n} \chi_{k}\left|\psi_{k}\right\rangle=0 \\
& T_{N}=-\frac{\hbar^{2}}{2} \sum_{I=1}^{N_{a t}} \frac{\nabla_{I}^{2}}{M_{I}}=-\frac{\hbar^{2}}{2} \nabla_{M}^{2} \quad \nabla^{2} A B=\left(\nabla^{2} A\right) B+2 \nabla A \cdot \nabla B+A \nabla^{2} B \\
& \text { Non-adiabatic coupling terms } \\
& \text { Prove it! } \\
& \left.\left[U-\left(T_{N}+E_{i}\right)\right] \chi_{i}+\sum_{k=1}^{N_{S}}\left[\hbar^{2} \nabla_{M} \chi_{k} \cdot\left\langle\psi_{i} \mid \nabla_{M} \psi_{k}\right\rangle-\chi_{k}\left\langle\psi_{i}\right| T_{N} \psi_{k}\right)\right]=0
\end{aligned}
$$

$$
\left[U-\left(T_{N}+E_{i}\right)\right] \chi_{i}+\sum_{k=1}^{N_{s}}\left[\hbar^{2} \nabla_{M} \chi_{k} \cdot\left\langle\psi_{i} \mid \nabla_{M} \psi_{k}\right\rangle-\chi_{k}\left\langle\psi_{i} \mid T_{N} \psi_{k}\right\rangle\right]=0
$$

If non-adiabatic coupling terms $=0$

$$
\left[U-\left(T_{N}+E_{i}\right)\right] \chi_{i}=0
$$

Nuclear vibrational problem.

If E_{i} is expanded to the second order around the equilibrium position:
$E_{i}=E_{i}\left(\mathbf{R}_{e q}\right)+\frac{1}{2} \sum_{k=1}^{3 \text { Nat } 3 \text { Nat }} \sum_{l=1}\left(\frac{\partial E_{i}}{\partial q_{k} \partial q_{l}}\right)_{e q} q_{k} q_{l} \quad q_{k}=M_{k}^{1 / 2}\left(x_{k}-x_{k, e q}\right)$
it can be treated by normal mode analysis.

Beyond Born-Oppenheimer II:

 Time-dependent formulation
Time-dependent formulation

$$
\begin{aligned}
& \left(i \hbar \frac{\partial}{\partial t}-\mathbf{H}\right) \Phi(\mathbf{r}, \mathbf{R}, t)=0 \\
& \mathbf{H}=T_{N}+H_{e}\left\{\begin{array}{l}
T_{N}-\text { Kinetic energy nuclei } \\
H_{e}-\text { potential energy terms }
\end{array}\right.
\end{aligned}
$$

$\left\{\psi_{i}\right\}$ which solves: $\left(H_{e}-E\right) \psi_{i}=0 \quad$ (adiabatic basis)
$\psi_{i}=\psi_{i}(\mathbf{r} ; \mathbf{R})$ depends on the electronic coordinates \mathbf{r} and parametrically on the nuclear coordinates \mathbf{R}.

Since $\left\{\psi_{i}\right\}$ is a complete basis, any function in the Hilbert space can be exactly written as a linear combination of ψ_{i}.

$$
\begin{aligned}
& \begin{array}{l}
\Phi(\mathbf{r}, \mathbf{R})=\sum_{k=1}^{N_{s}} \chi_{k}(\mathbf{R}) \psi_{k}(\mathbf{r} ; \mathbf{R}) \quad \chi_{k}=\left\langle\psi_{k} \mid \Phi\right\rangle \text { nuclear wave function } \\
\mathbf{H}=T_{N}+H_{e} \longrightarrow \quad .
\end{array} \\
& \left(i \hbar \frac{\partial}{\partial t}-\mathbf{H}\right) \Phi(\mathbf{r}, \mathbf{R}, t)=0 \\
& \text { Multiply by } \psi_{i} \text { at left and integrate in } \\
& \text { the electronic coordinates }
\end{aligned}
$$

Prove it!

$$
\left[i \hbar \frac{\partial}{\partial t}-\left(T_{N}+E_{i}\right)\right] \chi_{i}+\sum_{k=1}^{N_{s}}\left(i \hbar\left\langle\psi_{i} \left\lvert\, \frac{\partial}{\partial t} \psi_{k}\right.\right\rangle-\left\langle\psi_{i} \mid T_{N} \psi_{k}\right\rangle\right) \chi_{k}=0
$$

Time dependent Schrödinger equation for the nuclei

Nonadiabatic coupling terms

$$
\left[i \hbar \frac{\partial}{\partial t}-\left(T_{N}+E_{i}\right)\right] \chi_{i}+\sum_{k=1}^{N_{s}}\left(i \hbar\left\langle\psi_{i} \left\lvert\, \frac{\partial}{\partial t} \psi_{k}\right.\right\rangle-\left\langle\psi_{i} \mid T_{N} \psi_{k}\right\rangle\right) \chi_{k}=0
$$

First suppose the couplings are null (adiabatic approximation):

$$
\left[i \hbar \frac{\partial}{\partial t}-\left(T_{N}+E_{i}\right)\right] \chi_{i}=0
$$

Independent equations for each surface.

Classical limit of nuclear motion

$$
i \hbar \frac{\partial \chi_{i}}{\partial t}-\left(T_{N}+E_{i}\right) \chi_{i}=0
$$

$\chi_{i}(\mathbf{R}, t)=A(\mathbf{R}, t) \exp \left[\frac{i}{\hbar} S(\mathbf{R}, t)\right]$
$S(\mathbf{R}, t)=\int_{0}^{t} L d t^{\prime}$
$\frac{\partial S}{\partial t}+\sum_{I} \frac{(\nabla S)^{2}}{2 M_{I}}+E_{i}=\sum_{I} \frac{\hbar}{2 M_{I}} \frac{\nabla^{2} A}{A}$
$\frac{\partial S}{\partial t}+\sum_{I} \frac{(\nabla S)^{2}}{2 M_{I}}+E_{i}=0$

Tully, Faraday Discuss. 110, 407 (1998)

Classical limit $\hbar \rightarrow 0$

The phase (action) is the integral of the Lagrangian

Write nuclear wave function in polar form
Hamilton-Jacobi Equation

$$
\frac{\partial S}{\partial t}+\sum_{I} \frac{(\nabla S)^{2}}{2 M_{I}}+E_{i}=0
$$

To solve the Hamilton-Jacobi equation for the action is totally equivalente to solve the Newton`s equations for the coordinates!

> Newton equation

$$
-\nabla E_{i}=M_{I} \frac{d^{2} \mathbf{R}_{I}}{d t}
$$

In the classical limit, the solutions of the time dependent Schrödinger equation for the nuclei in the adiabatic approximation are equivalent to the solutions of the Newton`s equations.

In which cases does this classical limit lose validity?

In which cases does this classical limit lose validity?
adiabatic quantum terms $\neq 0$

$$
\frac{\partial S}{\partial t}+\sum_{I} \frac{(\nabla S)^{2}}{2 M_{I}}+E_{i}=\sum_{I} \frac{\hbar}{2 M_{I}} \frac{\nabla^{2} A}{A}
$$

2
nonadiabatic coupling terms $\neq 0$

$$
\left[i \hbar \frac{\partial}{\partial t}-\left(T_{N}+E_{i}\right)\right] \chi_{i}+\sum_{k=1}^{N_{s}}\left(i \hbar\left\langle\psi_{i} \left\lvert\, \frac{\partial}{\partial t} \psi_{k}\right.\right\rangle-\left\langle\psi_{i} \mid T_{N} \psi_{k}\right\rangle\right) \chi_{k}=0
$$

Non-adiabatic coupling terms

$$
\left[i \hbar \frac{\partial}{\partial t}-\left(T_{N}+E_{i}\right)\right] \chi_{i}+\sum_{k=1}^{N_{s}}\left(i \hbar\left\langle\psi_{i} \left\lvert\, \frac{\partial}{\partial t} \psi_{k}\right.\right\rangle-\left\langle\psi_{i} \mid T_{N} \psi_{k}\right\rangle\right) \chi_{k}=0
$$

$$
\mathrm{x}_{1}\left(\mathrm{a}_{0}\right)
$$

Key ideas

$$
\Phi(\mathbf{r}, \mathbf{R})=\sum_{k=1}^{N_{s}} \chi_{k}(\mathbf{R}) \psi_{k}(\mathbf{r} ; \mathbf{R}) \text { Born-Huang Model }
$$

$$
\Phi(\mathbf{r}, \mathbf{R}) \approx \chi_{i}(\mathbf{R}) \psi_{i}(\mathbf{r} ; \mathbf{R}) \quad \text { Adiabatic approximation }
$$

$$
\left\{\begin{array}{l}
\left(H_{e}-E_{i}\right) \psi_{i}=0 \\
{\left[U-\left(T_{N}+E_{i}\right)\right] \chi_{i}=0}
\end{array}\right\}
$$

Born-Oppenheimer Approximation

$$
\left[U-\left(T_{N}+E_{i}\right)\right] \chi_{i}+\sum_{k=1}^{N_{s}} \underbrace{\left[\hbar^{2} \nabla_{M} \chi_{k} \cdot\left\langle\psi_{i} \mid \nabla_{M} \psi_{k}\right\rangle-\chi_{k}\left\langle\psi_{i} \mid T_{N} \psi_{k}\right\rangle\right.}]=0
$$

Nonadiabatic coupling terms

