
Born‐Oppenheimer	Approximation
and	Beyond
Mario Barbatti
A*Midex Chair Professor
mario.barbatti@univ‐amu.fr

Aix Marseille Université, Institut de Chimie Radicalaire 

L2



L I G H T  A N D
M O L E C U L E S

2

Adiabatic x diabatic x nonadiabatic
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From Greek diabatos: to be crossed or passed

diabatic = with crossing

a-diabatic = without crossing

non-a-diabatic = with crossing!?
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without exchanging (cross) heat or energy with environment  
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“A physical system remains in its instantaneous eigenstate if a 
given perturbation is acting on it slowly enough and if there is a 
gap between the eigenvalue and the rest of the Hamiltonian's 
spectrum.” Adiabatic theorem (Born and Fock, 1928).

E

x

In this example (adiabatic process), the spring constant k of a 
harmonic oscillator is slowly (adiabatically) changed. The system 
remains in the ground state, which is adjusted also smoothly to 
the new potential shape. Its state is always an eingenstate of the 
Hamiltonian at each time (“no crossing”). 

k
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“A physical system remains in its instantaneous eigenstate if a 
given perturbation is acting on it slowly enough and if there is a 
gap between the eigenvalue and the rest of the Hamiltonian's 
spectrum.” Adiabatic theorem (Born and Fock, 1928).

In this example (diabatic process), the spring constant k of a 
harmonic oscillator is suddenly (diabatically) changed. The 
system remains in the original state, which is not a eingenstate of 
the new Hamiltonian. It is a superposition (“crossing”) of several 
eingenstates of the new Hamiltonian. 
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“The nuclear vibration in a molecule is a slowly acting 
perturbation to the electronic Hamiltonian. Therefore, the 
electronic system remains in its instantaneous eigenstate if 
there is a gap between the eigenvalue and the rest of the 
Hamiltonian's spectrum.”

This is another way to say that: 
The electrons see the nuclei instantaneously frozen
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Beyond Born-Oppenheimer I:
Time-independent formulation
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Since  i is a complete basis, any function in the Hilbert space can be 
exactly written as a linear combination of i.

  0UH

eN HT H
TN – Kinetic energy nuclei
He – potential energy terms

 Rr;ii   depends on the electronic coordinates r and 
parametrically on the nuclear coordinates R.

 i which solves:   0e i iH E   (adiabatic basis)

ikki  
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Multiply by i at left and integrate in 
the electronic coordinates
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Non-adiabatic coupling terms
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Prove it!

eN HT H
  0UH
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If non-adiabatic coupling terms = 0

  0N i iU T E     
Nuclear vibrational problem.

If Ei is expanded to the second order around the equilibrium position:
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it can be treated by normal mode analysis.
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Beyond Born-Oppenheimer II:
Time-dependent formulation
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eN HT H
TN – Kinetic energy nuclei
He – potential energy terms

 i which solves:   0 ie EH 

 Rr;ii   depends on the electronic coordinates r and 
parametrically on the nuclear coordinates R.

Since  i is a complete basis, any function in the Hilbert space can be 
exactly written as a linear combination of i.
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(adiabatic basis)
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Prove it!

Multiply by i at left and integrate in 
the electronic coordinates

Time dependent Schrödinger equation for the nuclei
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Nonadiabatic coupling terms
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First suppose the couplings are null (adiabatic approximation):
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Independent equations for each surface.
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Classical limit of nuclear motion
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Tully, Faraday Discuss. 110, 407 (1998) 
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Hamilton-Jacobi Equation

To solve the Hamilton-Jacobi equation for the action is totally 
equivalente to solve the Newton`s equations for the coordinates!

dt
dME I

Ii
R2



Newton equation

In the classical limit, the solutions of the time dependent 
Schrödinger equation for the nuclei in the adiabatic approximation 

are equivalent to the solutions of the Newton`s equations.

In which cases does this classical limit lose validity?
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adiabatic quantum terms ≠ 01

nonadiabatic coupling terms ≠ 0
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In which cases does this classical limit lose validity?
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Non-adiabatic coupling terms

  








 








 


 sN

k
kkNikiiiN T

t
iET

t
i

1

0 

x1 (a0)

x 2
 (a

0)

E0

E1

1(t)

0(t)



L I G H T  A N D
M O L E C U L E S

22

     
1

, ;
sN

k k
k

 


 r R R r R Born-Huang Model

     , ;i i  r R R r R Adiabatic approximation

 
 

0

0
e i i

N i i

H E

U T E





   
 
      

Born-Oppenheimer Approximation

Nonadiabatic coupling terms
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