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Abstract  

Nonadiabatic dynamics simulation of electronically-excited states has been a 
research area of fundamental importance, providing support for spectroscopy, 
explaining photoinduced processes, and predicting new phenomena in a variety of 
specialties, from basic physical-chemistry, through molecular biology, to materials 
engineering. The demands in the field, however, are quickly growing, and the 
development of surface hopping based on density functional theory (SH/DFT) has 
been a major advance in the field. In this contribution, the surface hopping 
approach, the methods for computation of excited states based on DFT, the 
conection between these methodolgies, and their diverse implementations are 
reviewed. The shortcomings of the methods are critically addressed and a number 
of case studies from diverse fields are surveyed.  
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Abbreviations 

ADC Algebraic diagrammatic construction 

ALDA Adiabatic local density approximation 

CASSCF Complete active space self-consistent field 

CC  Coupled cluster 

CI  Configuration interaction 

CIS CI with single excitations 

CPA  Classical path approximation 

DFT Density functional theory 

DFTB  Density functional based tight binding 

DISH Decoherence-induced surface hopping 

GFSH Global-flux surface hopping 

LR  Linear response 

KS  Kohn-Sham 

MCSCF Multiconfigurational self-consistent field 

MRCI Multireference CI 

MR-CISD MRCI with singles and doubles 

MRPT Multireference perturbation theory 

REKS Spin-restricted ensemble-referenced KS 

ROKS  Restricted open-shell KS 

RPA Random phase approximation 

SDKS Single determinant KS 

SH  Surface hopping 

SH/DFT Surface hopping with DFT excited states 

TD  Time-dependent 

TDA  Tamm-Dancoff approximation 

TDHF Time-dependent Hartree-Fock 

UBS  Spin-unrestricted broken symmetry  
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1 Introduction 

Motivated by the advances in computational capabilities and algorithms, 
computational research on dynamics simulations of electronically-excited molecu-
lar systems has been quickly developing in the last decade. Larger and more com-
plex systems are reported from groups all over the world on a daily basis, provid-
ing fundamental information to interpret excited-state phenomena revealed by 
advanced spectroscopic techniques, to explain the photochemical process occur-
ring in different fields, and to predict new properties with potential technological 
applications.  

There are a relatively large number of methods for excited-state calculations 
available. They include wavefunction-based and density-functional-based methods 
derived from different approaches, as configuration interaction, perturbation theo-
ry, and coupled cluster; and resting on different approximation levels, from sem-
iempirical to fully first principles, from single-reference to multireference, from 
short truncated spaces to complete configurational expansions. Each of these 
methods and their hybrid combinations has its own domain of applicability de-
pending on the nature and size of the molecular system. Exactly for this reason, 
none of them can be expected to perform equally well for every problem without 
exception.  

Extensive benchmarks of excitation energies have shown that most of meth-
ods present mean deviation errors of about 0.2-0.3 eV for vertical excitation ener-
gies [1-5]. Not only such values are of the order of magnitude of many reaction 
barriers, but these errors are unevenly distributed among several states for the 
same method and tend to grow bigger out of the Franck-Condon region. Well 
known examples are the relatively large errors on the energy of ionic states pre-
dicted by truncated ab-initio configuration interaction [6] or on the energy of 
charge-transfer states of time-dependent density functional theory with conven-
tional functionals [7]. 

The root of this problem rests on the very nature of the electronic excitations. 
Electronically-excited states lie close to each other in the energy spectrum and rel-
atively small variations in the molecular geometry may lead to their reordering. 
Moreover, the character of these states may be extremely different: from diffuse 
Rydberg, through charge-transfer, to spatially localized densities.  

Given those features, a basic requirement for a proper computational descrip-
tion of an excited-state phenomenon is that the theoretical model should describe 
different types of states for different nuclear geometries on the same footing. At 
this moment, this is a requirement that no single method can fully and affordably 
satisfy. The consequence is that the simulations often deliver an unbalanced de-
scription of the electronic states, with deep implications on the reliability of pre-
dictions. 
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This problem is under relative control in static simulation of reaction path-
ways, where only few degrees of freedom are considered. In dynamics simula-
tions, however, it may grow out of control due to the much larger number of de-
grees of freedom and variables (now, time among them) to tackle. 

Besides the question of the accuracy of the potential energy surfaces, dynam-
ics simulations add two new layers of potential complications to the simulations: 
first, nonadiabatic phenomena [8-9], originated by the coupling of nuclear and 
electronic degrees of freedom during the dynamics propagation, must be taken in-
to account; second, the dynamics propagation itself multiplies the computational 
costs.  

Again, several methods are available for nonadiabatic excited-state dynamics 
simulations, from full propagation of the electronic wavefunctions [10], which re-
quires predefinition of multidimensional potential energy surfaces, to semiclassi-
cal approximations, which reduce the wavefunction propagation to ensembles of 
independent trajectories based only on local properties [11]. In particular, the in-
dependent-trajectory approximation, essential to the surface hopping approach, 
cannot predict nonlocal quantum effects, such as tunneling, quantum phases, or 
decoherence [8, 12-13]. Moreover, the statistical ensembles are often of too re-
duced size to comply with the computational capabilities, leading to high statisti-
cal uncertainties [14]. (For recent discussions on nonadiabatic dynamics beyond 
the independent-trajectories approach, see Refs. [15-17].) 

From the point of view of semiclassical nonadiabatic excited-state dynamics 
simulations, the ideal method for electronic structure calculations should satisfy 
the following criteria: 

1. Be computationally fast. 

2. Provide energies for excited states of different natures with similar accu-
racy. 

3. Provide reliable (preferentially analytical) gradients for excited states. 

4. Allow the computation of electronic structures near intersection seams 
with the ground state. 

5. Allow the computation of electronic structures near intersection seams 
between excited states. 

6. Be independent of human intervention for running large ensembles of 
different geometries. 

With different accuracies, methods for excited-states computation based on 
DFT comply with most of these criteria, especially computational efficiency. 
These methods, however, usually fail for criterion 4, the description of the cross-
ing seam with the ground state. Nevertheless, still considering the pros and cons, 
surface hopping based on DFT excitations (SH/DFT) is a good alternative for 
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nonadiabatic simulations, under the condition that it is applied critically, bearing 
in mind all these restrictions and limitations. 

In this contribution, we will exam the current situation of the SH/DFT meth-
ods, starting by a review of the surface hopping in Section 2. In Section 3, we will 
address the methods for computing excited state in the DFT framework, specially 
focusing on the linear-response time-dependent methodology and its relation to 
lower-level methods (Section 3.1). In Section 3.2, we will review the computation 
of nonadiabatic couplings in DFT. In Section 3.3, the limitations of the method in 
the context of dynamics simulations are critically addressed. In Section 4, the ele-
ments from Sections 2 and 3 will be put together to discuss the different SH/DFT 
implementations. Finally, in Section 5, we will present a series of case studies 
showing the potentials and limitations of using SH/DFT in diverse fields. 

2 Surface hopping overview 

In surface hopping, the time propagation of the quantum wavepacket is ap-
proximated by a swarm of semiclassical trajectories evolving on Born-
Oppenheimer surfaces of multiple electronic states. Nonadiabatic events (wave-
packet density transfer between states; see Ref. [8] for an excellent review on this 
topic) are simulated by a stochastic algorithm that allows each trajectory to jump 
to other states during the propagation. Thus, the statistics over the ensemble of tra-
jectories in terms of fraction of trajectories in each electronic state in each time 
step is expected to be an approximated representation of the wavepacket density 
distribution among the excited states as a function of time. The method was con-
ceptually proposed by Nikitin [18] and had its earliest implementations done by 
Tully and Preston [19]. It has been recently reviewed in Refs. [11, 20-22].  

In the most common surface hopping approach, all nuclear coordinates are 
driven by Newton’s equations of motion on a single adiabatic electronic state K. 
For the coordinates mR with the associated nuclear mass mM , they are given by 

 
2

2

1m K

m m

d E

Mdt


 


R

R
, (1) 

where KE  is the adiabatic potential energy of the current state K. Given a set of 

initial positions and velocities, Equation (1) is numerically integrated.  

Simultaneously to the Newton’s equations, the probability for the system to 
hop to another state L is evaluated. Diverse schemes for evaluation of such proba-
bilities have been developed [19, 23-30]. The most successful and popular ap-
proach has been the fewest switches proposed by Tully in the early 1990’s [28]. 
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In the fewest switches, the number of hopping events within one time step t 
is minimized. Under this condition, the hopping probability between states K and 
L is 

 
Population increment in  due to flux from  during  

.
Population of K L

L K t
P

K


  (2) 

The population of each electronic state L is given in terms of the coefficients 
cL(t) of the time-dependent wavefunction written as a linear combination of elec-
tronic time-independent electronic wavefunctions L: 

       , , ; .J J
J

t c t t  r R r R  (3) 

The coefficients cJ are obtained by solving a local approximation for the time-
dependent electronic Schrödinger equation, given in the adiabatic representation 
by [28] 

 0.L
L L LJ J

J

dc i
E c c

dt
  

 (4) 

In this equation, the coupling terms between any pair of states L and M are 

 LM L M LMt
 

    


τ v  (5) 

where LM is the first-order nonadiabatic coupling vector 

 .LM L M   Rτ  (6) 

and v is a vector collecting the nuclear velocities.  

When explicit nonadiabatic coupling vectors LM are not available (and this is 
often the case for excited states based on DFT), the coupling terms LM can be 
computed by finite differences as [31] 

 

       

1
σ

2 2 2 2 2

1
3S 3S S S ,

4

LM

LM ML LM ML

L M L M

t t t t
t t t t t

t

t t t t t t
t

                                     

         

(7) 

where      S LLM Mt t t t      are wavefunction overlaps between differ-

ent time steps. This method can be generally used for any electronic-structure 
method, provided that a configuration interaction representation of the electronic 
wavefunction can be worked out [32-35]. In the last part of Eq. (7), the coupling is 
conveniently written in terms of full time steps (t, t t, t t) rather than in 
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terms of midpoints (t + t/2, t – t/2) as done in the original model. This shift is 
explained in Ref. [33]. Comparisons between couplings computed with the finite-
difference approach and with analytical derivatives are done in Refs. [33, 35-36]. 

Alternatively, cL can still be obtained by the local diabatization approach 
[37]. In this case, instead of integrating Eq. (4), the array of coefficients after one 
time step is given by 

        
1

1 1exp i
2

t t t
t t t t


    

     
 

E TE T
c T cħ , (8) 

where E is a diagonal matrix containing the adiabatic energies and T is an adia-
batic-to-diabatic transformation constructed by a Löwdin orthogonalization of the 
 tS wavefunction overlap matrix: 

        LM L J JM
J

S t t t t T t    . (9) 

In this equation, {  } represents the diabatic basis, which is obtained along the 

trajectory as explained in Ref. [37]. It has been shown that this method is more 
stable in the presence of weak nonadiabatic couplings than conventional algo-
rithms [38]. An alternative surface-hopping diabatization method is discussed in 
Ref. [39].  

Either via Eq. (4) or (8), as soon as the coefficients cL are obtained, the hop-
ping probability can be computed and within the fewest switches approach in the 
adiabatic representation it is given by 

  *
2

2
max 0, Re ,K L K L LK

K

t
P c c

c


   
  

 (10) 

In the most recent implementations of the fewest switches, the coefficients cL 
are corrected for decoherence effects [8, 40-42] before probabilities are computed 
[43-44].  

Recently, Jaeger, Fischer, and Prezhdo proposed the decoherence-induced 
surface hopping (DISH) method, a hopping algorithm that relies entirely on the 
decoherence times of each adiabatic state to determine the state branching [30]. 
Another recently proposed alternative to the fewest switches is the global-flux sur-
face hopping (GFSH) [23], which computes the hopping probability between 
groups of states with reduced or increased population. In this way, hops can occur 
even between non-directly coupled states (super-exchange). 

Having the hopping probabilities at a time t, a stochastic algorithm is invoked 
to decide in which state the dynamics will continue in the next time step. A hop-
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ping from state K to state L occurs if a uniformly selected random number rt in the 
[0, 1] interval is such that 

    
1

1 1

L L

K J t K J
J J

P t r P t


 
 

    (11) 

and the energy gap between the final and initial states satisfies [22] 

     .L K kinE E E R R  (12) 

Eq. (12) ensures that if the nuclear kinetic energy (Ekin) cannot compensate the 
variation of potential energy, the hop is rejected ("frustrated hop"). If the state 
changes, the momentum is changed accordingly to ensure conservation of total 
energy. Normally, the momentum adjustment is done in the direction of the 
nonadiabatic coupling vector. When the vector direction is not available, as it is 
the case of computation of the coupling terms via Eq. (7), then the adjustment may 
be done along the linear momentum direction.  

Surface hopping is not restricted to internal conversion and other types of 
nonadiabatic transitions may be considered, as those induced by spin-orbit cou-
plings (intersystem crossing) [45-46] or electromagnetic fields [47-50]. From a 
general standpoint, to consider these effects it is enough to redefine the coupling 
term in Eq. (5). For instance, a KL including simultaneously internal conversion, 
intersystem crossing, and an electromagnetic field may look like 

 02
,SO i tM L

LM L M LM ML

E Ei
H e

t c
 

     


μ A
 

 (13) 

where SO
LMH are the spin orbit couplings [46] and the last term accounts for the di-

pole interaction of the molecule with the field ( MLμ is the transition dipole mo-

ment between the L and M) [49]. In section 3.2, we will discuss how these cou-
plings can be computed within the DFT framework.   

3 Excited states in DFT 

3.1 Excitation energies in DFT 

In this section, different approximations for the computation of excited states 
based on DFT are analyzed. We start from a general description of the popular 
linear-response (LR) TDDFT. A number of other methods for computing excita-
tion energies based on DFT have been used for surface hopping as well. They will 
also be described here, highlighting the hierarchic relations between them. Meth-
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ods alternative to linear response–like real-time TDDFT [51-52]–or beyond linear 
response [53] can be also used to study excited states, but their discussion are out 
of the scope of this paper, as these methods have not been generally applied for 
surface hopping so far. Multiconfigurational DFT is briefly addressed in Section 
3.3. 

The excitation energies L in the LR-TDDFT are given by [54] 

 2 ,L L LF FΩ
 

 (14) 

where  

     1/2 1/ 2   Ω A B A B A B  (15) 

and the elements of A and B are 

 , , ,ia jb ij ab jb ia jbA K      (16) 

 , , .ia jb ia bjB K  (17) 

In these equations, i and j denote occupied orbitals and a and b denote virtual or-
bitals. A and B are defined here for a restricted approach, single excitation, and a 
functional without any fraction of Hartree-Fock exchange. For more general ex-
pressions, see Eq. 4.33 of Ref. [54]. For hybrid functionals, see Eq. 95-96 of Ref. 
[55].  

In Eqs. (16)-(17),   

 jb b j      (18) 

is the difference between the KS energies of the orbitals and 

    , | | |ia jb XCK ia jb ia f jb   (19) 

is given in terms of the two-electron integrals 

           1
| ' ' ' 'i a j bia jb d d      r r r r r r r r  (20) 

          | | ' ' 'XC i a XC j bia f jb d d f     r r r r r r  (21) 

for real KS orbitals k and within the adiabatic local density approximation 
(ALDA) [54]: 

 
   

2

,
'

XC
XC

E
f


 


r r

 (22) 

where EXC is the exchange-correlation energy.  
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If fXC is neglected, the time-dependent Hartree-Fock (also known as the ran-
dom phase approximation, RPA) is recovered [55]. If B = 0, we have the Tamm-
Dancoff approximation (TDA) [55], which has been often used for surface hop-
ping (see Section 4). Another approximation also often used in SH/DFT is the 
time-dependent density-functional-based tight binding (TD-DFTB) [56]. TD-
DFTB is based on a second-order expansion of the KS total energy with respect to 
charge-density fluctuations, followed by a time-dependent linear-response proce-
dure, where the transition densities ia in the coupling matrix Kia,jb (Eqs. (19)-
(21)) are approximated by atom-centered contributions [57]. 

To understand the next DFT methods for computing excitation energies and 
to also have a better insight in the meaning of the TDDFT solutions, we may ex-
plicitly check the structure of the TDDFT energies for a simple case of one occu-
pied orbital p and two virtual orbitals r and s (Figure 1). For this minimal system, 
the eigenvalue problem in Eq. (14) can be written as 

 
, , 1 12

, , 2 2

.
pr pr pr ps

ps pr ps ps

F F

F F


      
           

 (23) 

The eigenvalues of this Hermitian problem are 

 

2

, , , ,2 2
2,1 , .

2 2
pr pr ps ps pr pr ps ps

pr ps
      

     
   

 (24) 

 

 

Figure 1. Schematic illustration of a reduced system with one occupied and two virtual or-

bitals. The ground state (GS) determinant can give origin to two single excitations.   

If the nondiagonal terms of  are null (which occur when , , 0pr ps ps prK K  , 

see Eq. (26)), the excitations energies are simply 

 1/ 2 1/ 2
1 , 2 , ,pr pr ps ps      (25) 

implying that the energy of each sate is associated to an unique singly-excited de-
terminant (for instance, p→r) and independent from the remaining determinants.  
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The matrix elements of  can be explicitly written as (see Eq. 4.33 of 
Ref.[54]) 

 2
, ,2 .ia jb ij ab jb ia ia jb jbK           (26) 

With Eq. (26), the lowest excitation energy in Eq. (25) becomes 

 2
1 ,2 .pr pr pr prK       (27) 

(An equivalent equation holds for 2 due to p→s excitation.) If ,pr pr prK � , the 

excitation energy can be approximated by 

 1 ,pr pr prK  �  (28) 

This result corresponds to the excitation energy computed with density functional 
perturbation theory to the first order [58] and it is also directly obtained with TDA 
(B = 0).  

If ,pr prK is completely neglected, the excitation energy is given simply by the 

bare energy gap between orbitals 

 1 .pr r p     �  (29) 

corresponding to the zeroth order of the perturbative expansion [59].  

One realistic situation where ,pr prK  is near zero occurs in charge-transfer 

states. In such cases, p and r are localized in different parts of the molecules 

with little overlap. The excitation energy reduces to Eq. (29), which does not have 
the expected 1/R Coulomb attraction term, rendering the well known underestima-
tion of the charge-transfer excitation energies [55].  

The LR-TDDFT excitation energies given by Eq. (14) are derived by an ana-
lytic treatment of the poles of the dynamic polarizability of KS orbitals dynamical-
ly perturbed by an external field [54-55]. We have seen that LR-TDDFT improves 
the bare KS energy gap, Eq. (29), through two kinds of corrections. First, with di-
agonal terms that shift the energy of the uncoupled single excitation, Eq. (28), and, 
second, with nondiagonal terms, which bring contributions from all other single 
excitations in the KS orbital space, Eq. (24) [60].  

A series of methods based on independent propagation of non-interacting or-
bitals through the time-dependent KS equation have been proposed to be used in 
connection to surface hopping [61-64]. In such methods, derived aiming at large 
systems with high density of states, the excited states are computed from single 
determinants or spin-adapted single configurations using KS orbitals, with ener-
gies given by the bare KS gaps. Eq. (29) is a particular case for an excited state 
represented by a singly-excited determinant. For more general cases, see Eq. 20 of 
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Ref.[61]. Throughout this paper, we refer to this class of methods for determining 
DFT excitation energies as single-determinant Kohn-Sham (SDKS).  

A two-determinants DFT excitation method, the restricted open-shell Kohn-
Sham (ROKS) by Frank and co-authors [65], was often employed in the earliest 
investigations of SH/DFT [66-68]. In that approximation, the ground state is taken 
as the usual closed-shell KS determinant, while the first excited state is represent-
ed by a spin-adapted singly-excited singlet configuration. The two determinants 
forming the configuration are formed from excited-state KS orbitals, which are 
obtained by optimizing an ad hoc energy functional designed to represent the sin-
glet-triplet split in a two-electrons/two-orbitals configuration. Other formulations 
of restricted open-shell Kohn-Sham formalism have also been proposed in Refs. 
[69-71], but as far as we know, they have not been used in surface hopping simu-
lations.   

3.2 Nonadiabatic couplings in DFT 

Nonadiabatic couplings between different electronic states are needed for 
propagation of surface hopping dynamics. While analytical energy gradients for 
excited states computed with TDDFT are well established [72] and implemented 
in diverse computational-chemistry programs, analytical nonadiabatic couplings 
are still mostly unavailable. 

The theoretical background for computation of these couplings has been es-
tablished by Chernyak and Mukamel [73] and, alternatively, by Baer [51]. Hu and 
co-workers have further developed the Chernyak-Mukamel approach for computa-
tion of first-order nonadiabatic coupling vectors between the ground state and the 
first excited state [74-76]. Send and Furche have shown that the previous result 
neglects molecular orbitals derivatives [77]. Their own derivation including such 
terms, but still limited to couplings between the ground and the first excited states, 
is implemented in Turbomole [78].  

Due to the lack of analytical couplings between excited states in standard 
quantum-chemistry programs, finite-difference couplings have been largely used 
in surface hopping [32-34]. They are usually based on the approach proposed by 
Hammes-Schiffer and Tully [31], who showed that the couplings can be written in 
terms of wavefunction overlaps between sequential time steps during the dynam-
ics (see Eq.(7)).  

A particular problem to use TDDFT with this approach is the lack of an ex-
plicit wavefunction for the electronic states. A common solution has been to take 
the Casida’s Ansatz for the state assignment [54] as an approximation to the wave-
functions. In this case, the ground and excited-state wavefunctions are given (for a 
local functional) by 
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 0 ,KS   (30) 

 
,

,jb jb
L L

j b L

F jb




   (31) 

KS is the ground-state KS determinant and jb is the determinant with a single 

excitation from j to b. With these wavefunctions, which are analogous to a CIS 
expansion, the coupling terms LM can be evaluated according to Eq. (7) in terms 
of atomic orbital overlap integrals [33]. Although the validity of the Casida’s An-
satz for computation of couplings approach still needs to be extensively tested, it 
has been shown that TDDFT dynamics computed with these couplings compares 
well with dynamics based on CASSCF [79] and MRCI [80].  

Eq. (31) forms non-orthogonal set, which can have consequences for the 
evaluation of the couplings. Werner et al. [81] recommended the use the linear-
response coefficients without the square-root term in Eq. (31) as the CIS coeffi-
cients, which forms a orthogonal set within TDA. An alternative solution is to or-
thogonalize the approximate wavefunctions given by Eq. (31) before computing 
the couplings. In practical terms, far from conical intersections with the ground 
state, either of these approximations provides similar dynamical pictures. In some 
cases, negative excitation energies are obtained (see Section 3.3), consequently the 
wavefunctions are complex and imaginary couplings may be obtained. In such sit-
uations, as we discuss later, it is not recommendable to continue the SH/TDDFT 
propagation. 

The Casida wavefunctions given in Eqs. (30) and (31) have been employed 
by Tavernelli and co-workers to derive analytical nonadiabatic coupling vectors 
between the ground and the first excited states [82] and also between excited 
states [83]. They are given by 
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(As in the previous section, k corresponds to the molecular orbitals, i, j runs over 
occupied orbitals, and a,b over virtual orbitals.)  

In Ref. [84] it is shown that 0L in Eq. (32) is equivalent to the analytical cou-
pling vector derived by Hu et al. in Ref. [74], but, also as the Hu et al.’s result, it 
does not fully agree with Chernyak-Mukamel [73]. Ou et al. [36] have pointed out 
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that in the formalism leading to Eqs. (32) and (33), only the KS Fock matrix is dif-
ferentiated, omitting the full coupling that is induced by the second derivative of 
the exchange-correlation functionals. Still working with a CIS expansion based on 
TDA amplitudes, these authors have derived nonadiabatic coupling vectors (in-
cluding excited-excited terms) fully consistent with Chernyak-Mukamel [36].  

Apart of their limitations, Eqs. (32) and (33) are general results, which are 

still valid by replacing the operator KSHR by any single-body operator Ô  [83], 

as, for example, the electronic dipole operator, to obtain the transition dipole mo-
ment LMμ . 

Recently, spin-orbit coupling elements [85] were also derived based on the 
Casida wavefunctions, opening the possibility to perform surface hopping between 
surfaces with different multiplicities within the TDDFT approach. The coupling 
between singlet and triplet states, for instance, is given by  

 ' '

, '

,
jbia jbSO ia SO

ST S TTS
S Tia jb

H F F ia H jb
 

 


 


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where  and ’ are spin indexes. In Ref. [85], SOH  is approximated by the 1-
electron Breit-Pauli operator [86]. The computation of the 2-electron operator is 
discussed by Chiodo and Russo in Refs. [87-88]. 

In Ref. [89], the computation of Dyson orbitals based on Casida wavefunc-
tions is discussed. These Dyson orbitals were used to evaluate photoionizaton 
cross-sections during the dynamics and to simulate time-dependent photoelectron 
imaging spectra. 

In SDKS methods, the computation of the couplings is largely simplified by 
the singe-determinant approximation. As shown in Eq. 21 of Ref. [61], the cou-
plings in such cases are reduced to derivatives of KS orbitals, which can be inex-
pensively computed by finite differences during the dynamics propagation.  

For a discussion about the computation of the nonadiabatic couplings in 
ROKS, see Ref. [90]. For a discussion about computation of these couplings with 
REKS see Ref. [91].  

3.3 Critical appraisal 

One of the main challenges in excited-sate dynamics simulations is that tra-
jectories span large regions of the configuration space. Thus, the electronic struc-
ture method used to compute energies, energy gradients, couplings, and other 
properties should be able to deal with a large variety of electronic densities in-
duced by different conformations.  
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A good deal of the problem comes from a bad description of the ground state 
(see Figure 2). Strictly speaking, DFT should be valid even at the crossing seam 
between the ground and the first excited state, as the Hohenberg-Kohn theorems 
[92] can be generalized to degenerate ground states [93-94]. However, the KS 
formulation of DFT needs to fulfill two basic conditions [95]: 1) the reference 
state should be a single-determinant state to compute exchange energy and 2) the 
correlation hole should be reasonably described by homogenous (or weakly inho-
mogeneous) electron gas to compute the correlation energy. In diverse cases–as, 
for instance, in biradicals species, where nondynamic electron correlation plays a 
strong role–one of or both conditions are not satisfied, rendering a bad description 
of the ground state and, consequently, of the excited-states based upon. In particu-
lar, the methods for computing excitation energies discussed in Section 3.1 have in 
common the assumption that the ground state can be described by a single KS de-
terminant. (For a conceptual discussion of nondynamic electron correlation in 
DFT, see Ref. [95]. For a discussion about conical intersection in DFT, see Ref. 
[96]) 

 

 

Figure 2. Illustration of the main problems with DFT and TDDFT occurring in different 

regions of the ground- and excited-state surfaces. 

The development of a density functional theory including nondynamic (or 
“strong”) electron correlation–which Becke designated as the “last frontier” in 
DFT  [97]–has been pursued by many groups following different approaches. 
Among those approaches, we may cite the use of restricted open-shell ground-
state representations [98], configuration ensembles with fractional occupations 
[91, 99-101], configuration interaction [102-103], multiconfigurational DFT 
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[104], hybrid multiconfiguration/(TD)DFT [105-106], and spin-unrestricted bro-
ken-symmetry (UBS) [107] approaches. Unfortunately, analytical energy gradi-
ents are not available for most of these methods, which rules out their use in sur-
face hopping dynamics. 

All the troubles caused by nondynamic electron correlation are rather re-
stricted to the crossing between the ground and the first excited state. In the case 
of crossing between excited states, however, if each of these states is well repre-
sented by single excitations from a well-behaved ground state, the description of 
the crossing does not present further problems. 

SH/DFT has other potential problems (Figure 2) besides nondynamical elec-
tron correlation. First, the results are deeply dependent on the functional. Second, 
double and higher excitations are not properly described by LR-TDDFT. Third, 
diffuse and charge-transfer states may be poorly described by conventional func-
tionals. All these problems though are not exclusive of dynamics simulations and 
are also part of routine investigations of excited states based on DFT. As such, 
they are addressed in the same way, by systematic test of functionals, methodolog-
ical comparisons, and use of range-separated functionals.  

To illustrate the current situation of excited state description for SH/DFT, we 
show in Figure 3 the potential-energy surfaces for the S1 state and for the S1/S0 
gap of ethylene along two important reaction coordinates, H2CCH2-torsion () and 
CCH2-pyramidalization (). All other coordinates are kept at their ground-state 
values optimized at the same level as used for energy calculations. These surfaces 
were computed with several different DFT-based methods and with ab-initio MR-
CISD, which is taken as the reference method. With the exception of the DFT-
MRCI [102], computed with the SV(P) basis set [108], all other DFT-based sur-
faces were computed with the 6-31G* basis set [109]. LC-BLYP [110-112] was 
computed with  = 0.2 a0

1 [113]. TD-DFTB was based on analytic expressions 
for the matrix elements [114]. MR-CISD was based on a small (2 electrons, 2 or-
bitals)-space [115] with the aug-cc-pVTZ basis set [116] assigned to C and cc-
pVDZ assigned to H.  

Ethylene S1 surface is a specially challenging problem, starting from 1) the 
adequate computation of the excitation into the V state [6], then 2) the description 
of the right topography of the state, which includes a crossing with the Z state near 
the twisted structure and a conical intersection at twisted-pyramidalized geome-
tries [115], to finally 3) the dynamics evolution itself, which has motivated a long 
debate between theorists and experimentalists [117-119]. In fact, Levine et al. 
[120] have used maps similar to those in Figure 3 (but computed for stretched CC 
distances) to discuss the qualitative deficiencies in the excited-state description 
provided by TDDFT. 
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Figure 3. S1 and S1S0 potential-energy surfaces of ethylene computed with diverse meth-

ods. Green regions indicate the crossing seam. Red/orange regions are negative energy 

gaps. In the illustration, ethylene has  = 90° and  = 45°. 

The MR-CISD result in Figure 3 has two main features that dominate the to-
pography and the dynamics in the S1 state: 1) there is a S1 minimum near  = 90° 
and  = 60° and 2) there is a conical intersection at  = 90° and  = 110°. Among 
all tested methods, the only ones that were able to reproduce both features are the 
DFT-MRCI [102] and REKS [91, 99, 101], which makes clear the importance of 
having a multiconfigurational description of the ground state. TDDFT-UBS, 
which is usually considered a good alternative for qualitatively recovering nondy-
namic electron correlation near a degeneracy [71] can describe reasonably well the 
conical intersection, but the topography along the  = 90° line shows diverse spu-
rious minima.  

Spurious minima were also observed in TDDFT and TDA with B3LYP [121-
122]. The minimum is at qualitatively wrong position at TDDFT-B3LYP with re-
stricted open shell (TDDFT-RO). The same happens for TDDFT-BLYP. TDA can 
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qualitatively predict the conical intersection ( = 90°,  > 70°). Somewhat surpris-
ingly, the simple HOMO-LUMO gap is the only other method predicting a twist-
ed-pyramidalized conical intersection (at  = 90°,  = 70°). All other methods 
wrongly predict an extended S1/S0 seam along the  = 90° line, starting from  = 
0°. 

A disturbing feature that can be observed in TDDFT-B3LYP, TDDFT-UBS- 
B3LYP, TDA-B3LYP, and TDDFT-LC-BLYP is that the excitation may become 
negative near the crossing seam. This is not an exclusive problem of DFT-based 
methods, but it can be observed in other single-reference methods as well, like 
coupled cluster either with equation-of-motion or linear-response approaches.  

As discussed in Ref. [123], near the degeneracy, self-interaction errors may 
cause the HOMO to be less stable than the LUMO, leading to imaginary excitation 
energies in TDDFT (see Eq. (27)). This does not happen at TDA because the exci-
tation energy is given by terms like in Eq. (28). This feature has been claimed to 
represent an improved stability of the TDA-based dynamics in comparison to that 
based on TDDFT [123]. Nevertheless, as we can see in the negative gap regions in 
Figure 3, both methods are still unstable near the degeneracy. These negative exci-
tations are clearly due to the mixing with the other singly-excited determinants, 
which can be avoided neither in TDDFT nor in TDA. 

In SDKS methods, the excitation energies are given by the bare KS gaps 
[61]. In the case of the ethylene, we can see in Figure 3 that the bare KS energy 
(given by the HOMO-LUMO gap and neglecting double excitations near the 
twisted structure) gives an adequate representation of the S1 state and of the S1-S0 
gap. This good behavior, however, should not be taken for granted. Maitra [60], in 
a critical discussion of these approximation in the context of surface hopping, 
showed that the bare KS energies may be far from adiabatic and closer to diabatic 
energies. 

Ethylene is admittedly a too harsh case for DFT-based methods, as its dy-
namics is deeply controlled by coordinates involved in the nonadiabatic events. 
SH/DFT methods have been developed to deal with large molecular systems and 
in these cases the dynamics may evolve in the configurational space spanning re-
gions relatively far from any muticonfigurational ground state. Under such situa-
tion, the excited-state dynamics involving a large manifold of excited states can be 
well simulated with DFT-based methods.  

Take, for instance, the schematic dynamics illustrated in Figure 4-top. The 
dynamics starts at a high excited state (here, the second state to simplify the pic-
ture). Using a multireference method like MRCI, we would observe a relaxation to 
the first excited state (a), then oscillation around the minimum of this state (b). 
From this minimum, the molecule can eventually fluoresce to the ground state (c) 
or cross a barrier (d) to reach a conical intersection, from where it relaxes to the 
ground state minimum (e).   
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Figure 4. Schematic comparison of a trajectory computed with surface hopping based on 

multireference method (top) and on TDDFT (bottom).  

In principle, SH/TDDFT can adequately describe most of this process (Figure 
4-bottom). The relaxation through the manifold of excited states (a) can be de-
scribed if these states are dominated by single excitations from a well-behaved 
ground state and if the functional allows to describe special features like charge-
transfer states. The oscillation around the excited minimum (b) is also not a prob-
lem, at least if this minimum is not on the top of a multiconfigurational ground 
state. Neither the radiative process (c) nor the barrier crossing (d) presents any 
special problems, apart from functional dependencies. Even the relaxation until 
near the crossing with the ground state (e) can in principle be described. In fact, all 
this process may be better described with TDDFT and other correlated single-
reference methods like the algebraic diagrammatic construction to the second or-
der (ADC(2) [124-125]), than with an uncorrelated multiconfigurational method 
like CASSCF [35]. The real problem starts very close to the state crossing (usually 
for energy gaps smaller than 0.1 eV), where the convergence of the KS equations 
tends to fail and even if convergence is achieved, regions with negative excitation 
energies may be reached. Besides that, as discussed by Levine et al.[120], the lack 
of nonadiabatic interactions between the ground and the excited states may lead in 
some cases to the wrong dimensionality of the intersection seam with the ground 
state. (See Ref. [126] for a comparative discussion of the shape of the crossing 
seam computed with different methods.) 

Although diverse groups working with SH/DFT choose to compute hops to 
the ground state, it is our opinion that the results obtained from this procedure are 
not reliable. We have adopted as strategy to stop the dynamics simulations as soon 
as a certain energy-gap threshold is reached, usually 0.15 eV (see, for instance, 
Ref. [127]). This last time step is then taken as an estimate of the time for internal 
conversion to the ground state. This strategy, which we apply not only for 
TDDFT, but also for ADC(2) [35, 128], allows the computation of excited-state 
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lifetimes and the early split of population between different reaction channels, but 
unfortunately it does not provide enough information for computation of reaction 
yields in the ground state.  

4 Surface-hopping/DFT implementations 

One of the reasons of the popularity of the surface hopping method is that its 
implementation is straightforward. This has given rise to several home-made pri-
vate codes to simulate SH/DFT [62-63, 81, 129]. There are also few general pro-
grams of public access (either commercial or non-commercial) with SH/DFT ca-
pability, including Newton-X [130-131], PYXAID [61, 132], Turbomole [78], and 
CPMD [133]. 

The main difference among the several implementations of SH/DFT is exact-
ly which DFT method is being used for computing the electronic-structure quanti-
ties. The main features of the most common implementations are summarized in 
Table 1.  

Table 1. Survey of diverse implementations of SH/DFT. Excited states can be computed 

with linear response time-dependent (LR-TD) theory, single determinant KS (SDKS), or 

restricted open shell KS (ROKS); Single (SS) or multiple (MS) excited states can be includ-

ed; states can be restricted to single (SE) or multiple (ME) excitations; propagation can be 

done in terms of Gaussian functions (GF) or plane waves (PW). 

DFT  

excitations 

Number 

of states 

Excitation 

level 

Basis 

type 

Refs. Public  

implementation 

LR-TDDFT MS SE GF [32] Newton-X 

LR-TDDFT SS SE GF [77] Turbomole 

LR-TD-DFTB MS SE GF [137]  

TDA MS SE GF [38] Newton-X 

TDA MS SE PW [34, 83] CPMD 

ROKS SS SE PW [68] CPMD 

SDKS MS ME GF [63]  

SDKS MS ME GF [62]  

SDKS MS ME PW [61, 134] PYXAID 

 

The most computationally efficient implementation of SH/DFT available is 
based on SDKS approximations [134], as that implemented in the PYXAID pro-
gram using plane waves. Variants of this method have also been developed by 
Fischer, Handt, and Schmidt [50, 62, 135] using Gaussian functions, by Gao and 
co-workers using DFTB KS orbitals [63], and by Shenvi, Roy, and Tully based on 
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a model Hamiltonian parameterized by DFT data [64, 136]. SDKS has been used 
to investigate diverse problems, especially in condensed matter (see Section 5). 
Besides the computational efficiency granted by the single-determinant approxi-
mation, Shenvi and co-workers [64] have pointed out that while in TDDFT the 
electronic Hilbert space must be truncated to include only a relatively small num-
ber of states, this restriction does not apply to SDKS, being a big advantage for the 
treatment of systems with large density of states. Moreover, SDKS also allows the 
inclusion of double and higher excitations [61]. On the down side, the bare KS en-
ergy gaps may not only strongly deviate from the exact energies, but also provide 
a poor approximation for adiabatic surfaces [60]. 

Still aiming at maximum computational optimization, Prezhdo and co-
workers have also introduced the so called “classical path approximation” (CPA) 
in PYXAID [61]. The CPA implies that the nuclear dynamics is supposed to 
evolve independently of the electrons, driven by kinetic effects. In practical terms, 
it means that the nuclear dynamics is propagated in the ground state and then it is 
used to compute the nonadiabatic electronic events in the excited states using ei-
ther the fewest switches surface hopping or one of the other surface hopping algo-
rithms developed by Prezhdo group [132]. The CPA may be especially inadequate 
for systems undergoing significant chemical changes like photofragmentation and 
chemical reactions. 

Another efficient implementation of SH/DFT is based on ROKS and was de-
veloped by Doltsinis and Marx [138]. The spin-adapted wavefunctions and the KS 
orbitals optimized for the excited-state density should in principle be an improve-
ment over the SDKS. SH/ROKS, however, is limited to a single excited state, 
which is a very strong limitation for most of realistic problems. Such approach is 
implemented in the CPMD program. 

SH/LR-TDDFT has been pioneered by Tavernelli and Rothlisberger [34] and 
by Mitrić and Bonačić-Koutecký [81]. Linear response should provide a better de-
scription of the excited-state surfaces than single determinant and ROKS ap-
proaches, at higher computational costs naturally (see Section 3.1). TDDFT is also 
not limited to a single surface as ROKS, but it cannot describe multiple excita-
tions. In the framework of linear response, surface hopping dynamics has been in-
vestigated with TDDFT, TDA, and TD-DFTB (see Section 5). In CPMD program, 
this approach is implemented based on plane waves, while in Newton-X, it is im-
plemented based on localized basis. It is also implemented in Turbomole, but lim-
ited to couplings between the ground state and the first excited state. Ehrenfest 
dynamics [139], another related semiclassical nonadiabatic dynamics method, can 
be performed with TDDFT using the Octopus program [140]. 

In the case of Newton-X, the coefficients cL to compute the hopping probabil-
ities (Eq. (10)) can be obtained either by integrating Eq. (4) or by using the local 
diabatization method (Eq, (8)). The program also allows the computation of sur-
face hopping through interfaces with different programs (Turbomole, Gaussian 
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[141], Columbus [142-143], Gamess [144]) and using different methods (TDA, 
TDDFT, ADC(2), CC2, CASSCF, MRCI), making it specially convenient for 
comparative analysis. 

5 Case studies 

There are a large number of molecular systems investigated with SH/DFT. 
This section does not aim at providing a comprehensive review of them, but to 
point out the main classes of problems in different fields, from where the reader 
can search for more information. 

SH/DFT has been developed mainly aiming at the treatment of large systems, 
for which wavefunction-based methods are computationally too expensive. It is 
possible, however, to find a series of investigations for photoreactions of small 
molecules (see Table 2), which has been useful to gauge the quality of these simu-
lations. CH2NH2

+, for instance, has been used as a test case of SH/TDA [34, 79] 
and SH/SDKS [145]. In both cases, qualitative agreement with surface 
SH/CASSCF [146] is observed. We should note, however, that this agreement 
may be accidental, as CH2NH2

+ is a very small system with only two relevant ex-
cited states, a single dominant reaction path, and lifetime shorter than 100 fs. More 
impressive is the semi-quantitative agreement observed between SH/TDDFT [80] 
and SH/MRCI [147] for pyrrole. In this case, TDDFT dynamics with 10 excited 
states has successfully predicted the excited-state lifetime and the split of popula-
tion among several reaction paths.   

A more applied class of systems investigated with SH/DFT excitations in-
volves photoinduced proton transfer and photoinduced isomerization in medium-
sized molecules. A typical example of such class is azobenzene, which has been 
studied with SH/ROKS [148] and SH/SDKS [149]. Dynamics based on both pro-
vide a good description of the cis-trans izomerization of azobenzene in the gas 
phase in comparison to other semiempirical and ab-initio wavefunction-based sur-
face hopping simulations [150-154]. Azobenzene has been chosen by a number of 
groups, including ours, as a standard test-case for methods. We should consider, 
however, that this molecule may not be challenging enough to be a good test case. 
After S1 excitation, azobenzene evolves adiabatically until finding the intersection 
to the ground state, approaching the crossing seam along torsional coordinates. 
These features imply that neither nonadiabatic effects between excited states nor 
the dimensionality of the crossing seam can be really tested with this system. On 
the other hand, azobenzene is an excellent system to probe the topography of S1 
and the S1/S0 coupling strength, which can be done through simulations of excit-
ed-state lifetime and isomerization yield. 



Table 2. Survey of case studies with SH/DFT. 

System Method Ref. System Method Ref. 

Basic processes in small molecules Systems of biological interest 

Pyrrole, imidazole, furan TDDFT [80, 89, 155] Diphenyldibenzofulvene SDKS [63] 

Pyrazine TDDFT [81, 156] Riboflavin TDDFT [157] 

Pyrrole ROKS [158] Kynurenine TDDFT [129] 

CH2=NH ROKS [68] Adenine TDDFT [35, 159] 

CH2=NH2
+ TDA, SDKS [79, 145] Adenine gas and in water TDDFTB [137] 

CH2Cl-CF3 TDDFT [160] Guanine, cytosine, uracil,  ROKS [66, 161-163] 

Oxyrane TDA [123] Guanine-cytosine pairs ROKS [164] 

Indole in water TDDFT [165] Protonated tryptophan TDA [166] 

O(3P)+C2H2 (ISC) UDFT [167] Acetylphenylalaninylamide TDDFT [168] 

Photoinduced proton transfer, isomerization Systems of interest for materials sciences, surfaces 

Hydroxyquinoline-NH3 TDA [169] Carbon nanotubes SDKS [170-171] 

Methylformamide dimer TDDFT [127] Graphene SDKS [172] 

Bridged azobenzene ROKS [173] Cd33Se33, Si29H24 (quantum dot) SDKS [23, 145] 

Azobenzene gas and in water ROKS [148] NO/Au(111) SDKS [64, 136] 

Azobenzene, Stilbene SDKS [149] Pentacene crystal SDKS [61] 

Diphenydibenzofulvene SDKS [63] Pentacene/C60 SDKS [174] 

Catalysis Reviews 

Cr(CO)6 TDDFT [175] Nonadiabatic phenomena  [8, 126, 176] 

Ru (II) trisbipyridine in water TDA [177] Surface hopping  [11, 139, 178] 

Chromophore-TiO2 SDKS [134] Dynamics/TDDFT  [20, 179] 

Water splitting on GaN SDKS [180] DFT excited states  [54-55, 181] 



One of the main problems with SH/DFT is the deep dependence on the cho-
sen functional. This can be illustrated with an example that we have recently in-
vestigated, the excited-state dynamics of N-methylformamide dimer (NMF) [127]. 
These simulations showed that NMF dimers are protected against photo-
dissociation by a proton-transfer mechanism. The excited-state proton transfer oc-
curs according the Sobolewski-Domcke mechanism [182], where an electron is 
transferred before and then followed by the proton (see Fig. 5). For properly de-
scribing the charge-transfer state, SH/TDDFT was done with the range-separated 
LC-BLYP functional [110-112]. The range-separation parameter was fixed at  = 
0.2 a0

1, a value based on a non-empirical parameterization [113]. Our tests with 
diverse values of  showed that the ratio between dissociation and proton transfer 
was deeply dependent on this parameter. Not surprisingly, larger values favored 
dissociation by under-stabilizing the charge-transfer state. (In Gaussian program 
[141], for instance, the default value of m is 0.47 a0

1.) Lower values favored pro-
ton transfer for the opposite reason. 

 

Figure 5. Evolution of the (S1-S0) electron density difference during a single surface-

hopping trajectory of N-methylformamide dimer computed with TDDFT with LC-BLYP 

( = 0.2 a0
1). Green (orange) indicates electron acceptor (donor) regions. Based on data 

from Ref. [127]. 

Diverse systems of biological interest have also been investigated with 
SH/DFT (see Table 2). In this class, a challenging case has been the description of 
purine nucleobases. An indication of the problem was already in the earliest simu-
lations of 9Me-keto guanine with SH/ROKS [161-162], whose trajectories did not 
reveal any conical intersection with the ground state. At that point, the internal 
conversion of guanine was attributed to an enhanced nonadiabatic coupling pro-
moted by out-of-plane vibrations. Later, SH/TD-DFTB [137] predicted an excited-
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state lifetime of 11 ps for adenine gas, ten times longer than the experimental re-
sult. The deviation was then attributed to the distribution of initial energies. More 
recently, systematic investigations of adenine gas with SH/TDDFT with several 
functionals once more led to very long excited-state lifetimes [35, 159]. These re-
sults are conveniently plotted in Figure 6 in terms of the S0 population 1 ps after 
photoexcitation. Even the most optimistic SH/TDDFT simulation at the limit of 
the error bar is inferior to 40%, while the experimental result reaches 68%. The 
root of the problem seems to be connected by an overstabilization of the ground 
state energy along planar distortions in comparison to nonplanar distortions. This 
unbalanced ground state profile leads to a wrong description of the excited-state 
minimum [159].    

 

Figure 6. Ground state population of adenine gas 1 ps after photoexcitation according to 

the experiment [183] and to surface hopping based on diverse LR-TDDFT simulations.  

TDDFT data from Refs. [35, 159]. TDDFTB from Ref. [137] (supposing simple exponential 

decay). Sampling error of the simulations for 90% confidence level.  

SH/SDKS has allowed to stretch the limits of the simulations to much beyond 
it can currently be done with TDDFT or wavefunction-based methods. In particu-
lar, it has allowed to investigate large organic chromophores [63], adsorbance of 
molecules on metal [64, 136] and semiconductor [134, 180] surfaces, Auger dy-
namics in quantum dots [23], carbon nanostructures [170, 172], and organic crys-
tals [61, 174].  

An interesting example in this class of systems related to condensed matter 
and materials science is the recently published simulations for a P3HT/carbon-
nanotube heterojunction  [171]. Organic heterojunctions have been intensively ex-
plored for the development of organic photovoltaics based on photoinduced elec-
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tron transfer [184-185]. P3HT (poly(3-hexylthiophene)) is a standard organic pol-
ymer used as chromophore and electron donor [186], while carbon nanotubes 
(CNT) are electron-acceptor materials with enhanced charge-transport properties 
[187]. Notwithstand the limitations of DFT to approach this type of system [188], 
dynamics with SH/SDKS predicts that there is a strong asymmetry between the 
electron and hole transports in P3HT/CNT interface (Figure 7). While photoexci-
tation of P3HT leads to an electron transfer within 100 fs, the hole transfer takes 
much longer, occurring in the few picoseconds scale.    

 

 

Figure 7. Decay of the population of the electron and hole donor states in a P3HT (donor) – 

nanotube (acceptor) interface. Reprinted with permission from Ref. [171]. Copyright 2014 

American Chemical Society.  

6 Conclusions 

In the last decade, surface hopping dynamics has become an essential tool for 
the investigation of nonadiabatic processes in diverse fields, providing fundamen-
tal information to interpret data from time-resolved spectroscopy, to explain pho-
tochemical process, and to predict new properties with potential technological ap-
plications. Motivated by the advances in computational capabilities and 
algorithms, such simulations are under constant pressure to address always larger 
and more complex systems. The development of SH/DFT has opened possibilities 
to go much beyond wavefunction ab-initio methods could achieve. 

In most of implementations reported in the literature so far, DFT excitations 
used for surface hopping are obtained either from linear-response time-dependent 
theory or from bare KS gaps. Currently, we observe a large effort from different 
research groups to generalize the methods for different kinds of nonadiabatic in-
teractions, to provide better theoretical foundations, and to improve the hopping 
algorithms. The availability of SH/DFT in few public computational-chemistry 
softwares has also helped to popularize the method. 
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SH/DFT very successfully expanded the range of systems that can be ap-
proached for nonadiabatic dynamics investigations. We should, however, be aware 
that many methodological restrictions remain and must still be properly addressed. 
Such restrictions involve intrinsic limitations in the semi-classical local approach 
for nonadiabatic dynamics, in the sampling of statistical ensembles, and more fun-
damentally in the quality of the DFT excited-state predictions. In particular, the 
multireference character of regions of energy crossing between the excited and the 
ground states is still a challenge waiting for better solutions than those provides so 
far. 
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